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Executive Summary 
The purpose of this document is the description of the work carried out in Task 3.3 about FlexOffers (FOs). 

The main purpose of this task is to extend FOs so that they consider predictions, flexibility, and 

uncertainty for measures different from energy. First, a description of FOs will be provided; after that, it 

will be described how FOs can be extended in the way intended for the task. Finally, there will be a short 

demonstration on how those extended FOs work, what results can be achieved from their exploitation 

and the code that has been used for their implementation. 

1. Introduction 
The objective of D3.3 is to describe the extension of FOs to incorporate predictions, flexibility, and 

uncertainty for several types of measures. This document is organized as follows: 

• Chapter 2 (FlexOffers): gives an introduction on FOs, and how they model flexibility. 

• Chapter 3 (Extensions of FlexOffers for uncertainty): describes how FOs have been extended in 

order to incorporate uncertainty. 

• Chapter 4 (Extensions for other measures, and prediction modelling): shows how FO can be used 

to model several types of measures, and how they can be used to model predictions. 

• Chapter 5 (Demonstration): describes how certain types of extended FOs can be generated and 

shows a use case for their exploitation. 

• Chapter 6 (Conclusion): concludes the work done in this deliverable and describes future work 

for this WP. 

This deliverable has two main purposes: to show how FOs can model uncertainty (Chapter 3), and to 

show how FOs can be used to capture measures different from energy (Chapter 4). Chapter 3 will lead to 

the definition of a new type of FO, called uncertain FlexOffer (UFO), which allow the FO model to capture 

uncertainty. In chapter 4, we use FOs to model non-energy measures: in section 4.1 we use standard FOs 

and do not consider uncertainty, while in section 4.2 we model uncertainty for those measures by using 

UFOs. 
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2. FlexOffers 
This chapter will describe FOs, their purpose, their life cycle, and their functioning on a conceptual level. 

2.1. Introduction 

In the last decades, the use of Renewable Energy Sources (RES) is becoming more prominent in electrical 

grids. The way they generate energy is not controllable in many cases, such as wind and solar production, 

and it depends on variables such as time of the day and the year, or weather. The capability of adjusting 

energy demand to RES production is therefore very valuable; to this purpose, some grid users (called 

prosumers) are able to change their energy consumption in time and amount. This ability is called 

flexibility. In domOS, an ecosystem for smart services in buildings is developed, and flexibility is one of 

these services. 

Description of flexibility is a concept that has been treated extensively in the literature. Various 

mathematical models have been created, with different properties depending on the considered cases. 

The FO model was created in order to be capable to capture flexibility from many different types of 

devices, optimize the flexibility for generic purposes (e.g., reducing energy costs, peak shaving), 

aggregate the flexibility from many small energy loads into a few bigger ones, and do the opposite 

process (disaggregation) in order to control the actual loads. Therefore, FOs have the following 

properties: i) they can model flexibility from different device types in a unified format; ii) they can capture 

most/all of the total flexibility that is available from each device; iii) they are scalable with respect to 

optimization for long time horizons, and aggregation of many loads. However, there is a fourth aspect 

that needs to be treated: flexibility in buildings, which is at the core of the service deployed in domOS, is 

subject to uncertainty. Therefore, it would be important to have a model which complies to the previously 

descripted properties, and to the following: iv) the model should be able to consider uncertainty related 

to flexibility. Many models in the literature focused on one or more of these aspects, although none has 

been considering all of them at the same time, and in particular uncertainty. For representing flexibility 

from different devices in an unified format, whose importance is discussed in (Junker, et al., 2018), the 

models from (Schott, et al., 2019) and (Corsetti, et al., 2021) provide some examples. Regarding accuracy, 

linear time invariant (LTI) state-space models (Borrelli, et al., 2017) (Koller, et al.) are very precise in 

capturing flexibility for batteries and heat pumps, and the one from (Junker, et al., 2020) can accurately 

represent flexibility for building heating systems and water towers. In particular, the FlexOffer (FO) 

(Pedersen, et al., 2018) is a model which generates good approximations of flexibility for many different 

types of loads , which can be aggregated and optimized in a scalable way (Siksnys, et al., 2016), thus 

effectively addressing properties i) – iii). However, property iv) has not been considered yet: the work in 

this deliverable will address this point, while still retaining properties i) – iii). 

2.2. Running Example 

We will now describe a specific energy load, which will be used through this deliverable as an example 

for describing the concepts that will be introduced. We will consider a Tesla Powerwall battery. Its 

capacity is 14 kWh, its maximum charging and discharging power are both 5 kW, and its round-trip 

efficiency is 90%. We use one hour time units, i.e., the battery can either be charged or discharged by an 

amount up to 5 kWh at each time unit. 
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For describing the functioning of the battery, we use Coulomb counting (Meng, et al., 2019). At each time 

unit t, we write the state of charge (SoC) of the battery as: 

𝑆𝑜𝐶(𝑡) =  𝑆𝑜𝐶(𝑡 − 1) +  𝐿 ∙  𝑢+(𝑡) + 𝐿−1 ∙  𝑢−(𝑡) 

𝑆𝑜𝐶𝑚𝑖𝑛 ≤  𝑆𝑜𝐶(𝑡) ≤  𝑆𝑜𝐶𝑚𝑎𝑥               
𝐸𝑚𝑖𝑛

𝐿
≤  𝑢(𝑡) ≤  𝐸𝑚𝑎𝑥 

Here: 

• SoC(t) is the amount of energy in the battery at time t, expressed in kWh. 

• u(t) is the amount of energy that the prosumer gives to/receives from the battery at time t, in 

kWh: u(t) is positive if the battery is being charged, negative otherwise. u+(t) is max {u(t),0}, u-(t) 

is min {u(t),0}. 

• L is a real number that measures how much energy is kept while charging/discharging the 

battery: it goes from 0 (all the energy is lost) to 1 (no energy is lost).   

• SoCmin and SoCmax are the minimum and maximum state of charge that the battery can have in 

kWh, respectively.  

• Emin and Emax are the minimum and maximum amount of energy (in kWh) that can be taken 

from/given to the battery in one time unit.  In the example we are considering: SoCmin = 0 kWh, 

SoCmax = 14 kWh, Emin = -5 kWh, Emax = 5 kWh, L ~ 0.948. There are two use cases that we are 

considering: in the first, SoC(1) = 0 kWh and the battery can only be charged, in the second, 

SoC(1) = 7 kWh and the battery can be either charged or discharged at each time unit. We refer 

to these as the charging and switching cases, respectively. 

2.3. FlexOffer Life Cycle 

The baseline for this work is the FO model (Ferreira, et al., 2014) (Pedersen, et al., 2018), already 

mentioned in Section 2.1. Suppose we want to model flexibility for a certain device: a FO can be seen as 

a set of constraints on the values of the consumable energy for the following time units, which describe 

the flexibility available from said device. There are many techniques for generating FOs, depending on 

the type of device and the type of approximation needed.  

We will now describe the life cycle of an FO, shown in Figure 1. Two main parties are involved. The first 

is the prosumer, who generates and executes the FO; the second processes and issues schedules for the 

FO, and many different energy market actors can take this role. In (Neupane, et al.), this task belongs to 

the aggregator, so we will consider the aggregator as the processing party. 

Reading Figure 1 from left to right, the prosumer starts by forecasting flexibility for his/her devices and 

generating FOs according to that. After this, FOs are sent to the aggregator, which will determine if the 

FO is useful for its needs; after that, it decides whether to accept the FO or not and informs the prosumer 

of the response. If the FO is not accepted, it is not executed, and the cycle ends here. If the FO is accepted, 

the aggregator processes it (e.g., aggregating it with other FOs, performing optimization), and establishes 

a schedule for the FO, eventually after performing disaggregation. The FO schedule is then sent back to 

the prosumer, which will then execute it by controlling the device. 
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FIGURE 1: FLEXOFFER LIFE CYCLE 

2.2  Types of Constraints 

An FO is an approximation of the available flexibility, expressed in terms of constraints over the usable 

amount of energy at each time unit. In this section, call et the amount of energy consumed at time t, and 

T the time horizon we are considering.  

There are many types of constraints that have been used to define FOs. The simplest ones are called slice 

constraints, which are divided into start time constraints and energy constraints. A start time constraint 

determines the earliest and latest time unit at which the load can start. An energy constraint establishes, 

for each time unit at which the load is operating, the minimum and maximum amount of energy that can 

be consumed from that load. This means that for every time unit t, the energy constraint specifies a lower 

and an upper bound emint and emaxt such that 𝑒𝑚𝑖𝑛𝑡 ≤ 𝑒𝑡 ≤ 𝑒𝑚𝑎𝑥𝑡. A standard FO (SFO) is an FO whose 

constraints are all slice constraints.  

In more formal terms, a standard FO is defined as a tuple(𝑡𝑒𝑠, 𝑡𝑙𝑠, [𝑒𝑚𝑖𝑛1, 𝑒𝑚𝑎𝑥1], … , [𝑒𝑚𝑖𝑛𝑇, 𝑒𝑚𝑎𝑥𝑇]). 

tes and tls indicate respectively the earliest and latest starting time for the load, T is the duration (in time 

units) of the device operation once the device is activated, and for every k ∈  {1, … , T}, emink and emaxk 

are respectively the minimum and maximum consumable amount of energy from the device at time unit 

k after the activation.  

Another type of constraint is the total energy constraint (TEC), which specifies the lower (TEmin) and upper 

(TEmax) bounds for the energy that can be consumed over the considered time horizon. With the notation 

used before, this means: 

𝑇𝐸𝑚𝑖𝑛  ≤  ∑ 𝑒𝑡

𝑇

𝑡=1

 ≤  𝑇𝐸𝑚𝑎𝑥 

A total energy constraint standard FO (TEC-SFO) is an FO with slice and total energy constraints. 

A further type of constraint is the dependent energy constraint. This constraint specifies at each time unit 

t a lower and an upper bound on the amount of energy that can be consumed, depending on the total 

amount of energy that has been consumed before time unit t. In more formal terms, this means that 

there are three real numbers a, b, c such that: 
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𝑎 ∙  (𝑒1 + ⋯ + 𝑒t−1) +  𝑏 ∙  et ≤  c. 

A dependency FO (DFO) is an FO with dependency energy constraints. 

An FO can approximate flexibility in two main ways: inner and outer. In an inner approximation, the 

amount of modelled flexibility is less than the actually available amount: this means that there may be 

some flexibility not modelled by the FO. In an outer approximation, the modelled flexibility is more than 

the actually available flexibility: this means that the FO models all the available flexibility, but also models 

some flexibility that is not actually available. Outer approximation FOs can therefore generate more 

flexibility compared to inner FOs, but some of the modelled configurations may actually be unfeasible.  

Figure 2 shows the constraints described in this section for the charging case of the running example. In 

particular, (a) represents an inner approximation SFO, and (b) an outer approximation SFO: for each time 

unit the column describes how much energy can be used for charging the battery, and the horizontal line 

shows an example schedule. A TEC-SFO is represented in (c), with the TEC shown above the slice 

constraints, and (d) shows a DFO: for each time unit, the x axis indicates how much energy as been 

consumed in total before time t, and the y axis indicates how much energy can be consumed based on 

the value on the x axis. 

 

FIGURE 2: INNER (A) AND OUTER (B) SFOS, TEC-SFO (C) AND DFO (D) 
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3. Extension of FlexOffers for Uncertainty 

3.1. Uncertainty Definition 

Until now, the concept of FO has mainly been deterministic. More precisely, if we want to model flexibility 

for a certain device and we are able to determine precisely its status at all times, FOs will either be able 

to model flexibility accurately, or to give an accurate approximation which is much faster to optimize 

compared to an exact model. However, in cases where there is uncertainty on the status of the device, 

only one work has tried to model uncertainty (Frazzetto, et al.), and only related to specific aspects (time 

of activation for devices). 

For this reason, an extension of the FO concept is proposed in this task, which models uncertainty and 

takes it into account when describing flexibility. At the moment, three types of uncertainty are being 

considered: existence uncertainty, time uncertainty and amount uncertainty. Existence uncertainty is the 

uncertainty about the prosumer being actually able to deliver at all the flexibility described in the FO; 

time uncertainty is the uncertainty about the time at which the prosumer will have the possibility to 

activate the load, and amount uncertainty is the uncertainty about how much energy can be consumed 

by the device at a given time. The last two types of uncertainty can be grouped under a more generic 

concept, called value uncertainty. 

We want to create a FlexOffer which considers the value uncertainty related to the device. In order to do 

so, we first need to model this uncertainty. For better clarity, we will consider as a title of example the 

battery described in the running example, and more specifically the switching case. The reason why 

uncertainty for the battery needs to be modelled is the following: suppose we want to use the battery 

for flexibility for the following six hours. At the first hour, we know the state of charge of the battery, and 

therefore the available flexibility is known for certain. At the second hour, however, the amount of 

available flexibility depends on how much energy has been given to/taken from the battery during the 

first hour, so there is uncertainty on how much flexibility is available at that time. For the same reason, 

at the third hour, the amount of available flexibility depends on how much energy has been given 

to/taken from the battery during the first two hours, and so on. 

We know that the amount of flexibility available at each time unit depends on the state of charge SoC of 

the battery. Also, for the sake of simplicity, we will consider this equation for the variation of SoC(t): 

𝑆𝑜𝐶(𝑡)  =  𝑆𝑜𝐶(𝑡 − 1) +  𝑢𝐵(𝑡) 

𝑆𝑜𝐶𝑚𝑖𝑛 ≤  𝑆𝑜𝐶(𝑡) ≤  𝑆𝑜𝐶𝑚𝑎𝑥               𝐸𝑚𝑖𝑛 ≤  𝑢𝐵(𝑡) ≤  𝐿 ∙  𝐸𝑚𝑎𝑥 

This is the same as the state equation described before, except uB (t) is the amount of energy that the 

battery gives/receives, while u(t) was the amount given to/received from the prosumer. Because of the 

losses from the charging/discharging processes, those two quantities are different and regulated by the 

equations: 
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𝑢(𝑡) =
𝑢𝐵(𝑡)

𝐿
 if 𝑢(𝑡) ≥ 0 

𝑢(𝑡) = 𝐿 ⋅ 𝑢𝐵(𝑡) if 𝑢(𝑡) < 0 

3.2. Uncertainty Modelling 

Call T the time horizon for which we want to model flexibility. Since the amount of available flexibility at 

time t depends on SoC(t), we will have to model uncertainty for SoC(t) at each 𝑡 ∈  {1, … , 𝑇}. SoC(1) can 

be measured, which means that for t = 1 we can determine the available flexibility with certainty. 

However, for t > 1, SoC(t) depends on the amount of energy used before: therefore, the uncertainty for 

SoC(t+1) depends on the uncertainty for uB(t). 

Suppose that we know the probability distribution function (PDF) that describes the probability for uB(t) 

to assume each possible value in [Emin,Emax], and that we know it for each 𝑡 ∈ {1, … , 𝑇}: call �̅�𝑡 the PDF 

associated with uB(t). From this, it is possible to determine the PDF �̅�𝑡+1 that describes the probability for 

SoC(t+1) to assume each of its possible values in [SoCmin,SoCmax]. Since we already know SoC(1), we have 

𝑆𝑜𝐶̅̅ ̅̅
1̅ =  𝛿𝑆𝑜𝐶(1), the Dirac delta distribution concentrated at SoC(1). From now on, we can define 𝑆𝑜𝐶̅̅ ̅̅

�̅�+1 

as follows: 

𝑆𝑜𝐶̅̅ ̅̅
{̅𝑡+1}(𝑥) =  ∫ 𝑆𝑜𝐶̅̅ ̅̅

�̅�

𝐸𝑚𝑎𝑥

𝐸𝑚𝑖𝑛

(𝑥 − 𝑟) ∙  �̅�𝑡(𝑟) 𝑑𝑟 

This definition is mathematically equivalent to the following: the random variable whose distribution is 

𝑆𝑜𝐶̅̅ ̅̅
�̅�+1 is the sum of the random variable whose distribution is 𝑆𝑜𝐶̅̅ ̅̅

�̅� and the random variable whose 

distribution is �̅�𝑡. 

We now know the probability distributions related to SoC, and we want to determine the uncertainty in 

value flexibility. At time t, the term uB(t) indicates the amount by which we will charge the battery: call It 

the set of all values that uB(t) can possibly assume. We know that It is an interval and that 𝐼𝑡 ⊆

 [𝐸𝑚𝑖𝑛, 𝐸𝑚𝑎𝑥] . Our purpose is to build a function 𝑓𝑡 ∶  [𝐸𝑚𝑖𝑛, 𝐸𝑚𝑎𝑥] →  [0,1]  that, for every 𝑥 ∈

 [𝐸𝑚𝑖𝑛, 𝐸𝑚𝑎𝑥], describes the probability that 𝑥 ∈  𝐼𝑡. Note that ft is not a PDF: ft(x) does not describe the 

probability that uB(t) will assume the value x when the schedule is determined. ft(x) instead describes the 

probability that x belongs to the set of the feasible values for uB(t) before the schedule is chosen. 

We define ft as: 

𝑓𝑡(𝑥) = ∫ 𝑆𝑜𝐶̅̅ ̅̅
�̅�

𝑆𝑜𝐶𝑚𝑎𝑥−𝑥

𝑆𝑜𝐶𝑚𝑖𝑛−𝑥

(𝑟)𝑑𝑟 

The reason for this definition is the fact that 𝑥 ∈  𝐼 if and only if 𝑆𝑜𝐶𝑚𝑖𝑛 ≤  𝑆𝑜𝐶(𝑡) +  𝑥 ≤  𝑆𝑜𝐶𝑚𝑎𝑥, and 

therefore the probability that 𝑥 ∈  𝐼 is the probability that 𝑆𝑜𝐶𝑚𝑖𝑛 − 𝑥 ≤  𝑆𝑜𝐶(𝑡) ≤  𝑆𝑜𝐶𝑚𝑎𝑥 − 𝑥, which 

is measured by that integral. Note that ft is not a probability distribution. 
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Since it is difficult from a computational perspective to create pointwise-defined functions, we created a 

discrete approximation approach. We work under the hypothesis that SoC(t) and uB(t) can only assume 

values which are multiples of gr (a number which describes the granularity of the approximation), and 

therefore �̅� and 𝑆𝑜𝐶 ̅̅ ̅̅ ̅̅ are discrete distributions. So, 𝑆𝑜𝐶̅̅ ̅̅
1̅ becomes the zero vector, except for the value 

𝑆𝑜𝐶̅̅ ̅̅
1̅(𝑆𝑜𝐶(1)) =  

1

𝑔𝑟
. The equation for determining 𝑆𝑜𝐶̅̅ ̅̅

�̅�+1 can be written as 

   𝑆𝑜𝐶̅̅ ̅̅
�̅�+1(𝑥) =  ∑ 𝑆𝑜𝐶̅̅ ̅̅

�̅�

𝐸𝑚𝑎𝑥
𝑔𝑟

𝑟=
𝐸𝑚𝑖𝑛

𝑔𝑟

(𝑥 − 𝑔𝑟 ∙ 𝑟) ∙ �̅�𝑡(𝑔𝑟 ∙ 𝑟) 

and consequently, the equation for ft becomes 

𝑓𝑡(𝑥)  =   ∑ 𝑆𝑜𝐶̅̅ ̅̅
�̅�

𝑆𝑜𝐶𝑚𝑎𝑥−𝑥
𝑔𝑟

𝑟=
𝑆𝑜𝐶𝑚𝑖𝑛−𝑥

𝑔𝑟

(𝑔𝑟 ∙ 𝑟) 

An example has been made for the switching case of the running example. Here, �̅�𝑡(𝑥) is a uniform 

distribution with value 0.1 in  𝑥 ∈  [−5,0) and value 0.105 in 𝑥 ∈  [0,4.76], and SoC(1) = 7 kWh. We chose 

a value of 0.01 for gr. 

 

FIGURE 3: PDF OF SOC AND FLEXIBILITY 

Figure 3 shows the results for 𝑆𝑜𝐶̅̅ ̅̅ ̅ and for ft. The PDFs for SoC take different forms. For t = 1 we know 

SoC(1) with certainty, so the resulting PDF is a distribution which is zero everywhere except for the value 

of SoC(1), i.e. a Dirac delta distribution (even if the graph only shows up to 0.2 as value for energy = 7 

kWh, it is to be considered as infinity). For t = 2 the PDF is a step function. For t = 3 the PDF is a continuous 

function since the values in the defining equation vary continuously, composed by two straight lines: for 

the same reason, the PDF for t = 4 and above is a smooth function, being quadratic for t = 4, cubic for t = 

5 and so on. Those PDFs converge to a limit PDF for 𝑡 → ∞. About the flexibility probability functions ft 

we can see a similar behaviour, with ft converging to a certain function f for 𝑡 → ∞. It can also be noticed 

that the values with probability 1 of being available for flexibility are the same values issued for a standard 

FlexOffer that uses up all the available flexibility right away. 



   

 

www.domos-project.eu 

Deliverable:  D3.3 
Version:  3.1 

Due date:  28.02.2022 
Submission date: 28.02.2022 

Dissemination level:  Public 
    
   

D Flex-Offer Extensions for Predictions, Flexibility, and Uncertainty Modelling Page 13 
 

Consider a device we want to model flexibility for, and denote by et an amount of energy that this device 

may consume at time t. With the notation used until now, we define an uncertain FlexOffer (UFO) F as a 

tuple {𝑔1, 𝑔2 … , 𝑔𝑇} : here, 𝑔1 … , 𝑔𝑇  are functions from 𝑹  to [0,1] such that gt(et) represents the 

probability for the device to be able to consume the amount of energy et at time t. With the notation 

used before, we have 

𝑔𝑡(𝑒𝑡) = 𝑃𝑒𝑡(𝐹) ⋅ 𝑓𝑘(𝑒𝑘) 

Where 𝑃𝑒𝑡(𝐹) is a number representing existence and time uncertainty for F. 

In order to be optimized, we define a SFO from an UFO, in the following way. Let pt be a probability 

threshold: we want to define a SFO [𝑒𝑚𝑖𝑛1, 𝑒𝑚𝑎𝑥1, … , 𝑒𝑚𝑖𝑛𝑇 , 𝑒𝑚𝑎𝑥𝑇] such that, for every 𝑡 ∈ {1, … , 𝑇} 

and 𝑥 ∈ [𝑒𝑚𝑖𝑛𝑡 , 𝑒𝑚𝑎𝑥𝑡], we have 𝑔𝑡(𝑥) ≥ √𝑝𝑡𝑇 . This way, when multiplying, we ensure that every 

schedule defined within those constraints has probability pt or higher to be feasible. 
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4. FlexOffers for Other Measures, and Prediction 
Modelling 

4.1. FlexOffers for Other Measures 

Up to this point, FOs have only been used for describing energy flexibility. However, it is possible to use 

them in order to describe other quantities: this is possible because FOs model flexibility for time series, 

and therefore they can be adapted to model flexibility (and also uncertainty and predictions, as we will 

see) for other measures, as long as they can be expressed through time series.  

In order to explain better this concept, we introduce an example: consider the case of a heat pump. FOs 

can be used to express the energy flexibility relative to this device; this is achieved by creating a model 

for the heat pump (i.e., defining temperature thresholds, minimum and maximum energy output), 

choosing the constraints and type of approximation that we want to use, and then generating the FO. 

The result will be a set of constraints, describing the constraints for the amount of energy that can be 

used by the heat pump.  

However, using a certain amount of energy will change the temperature of the room. Since temperature 

can be expressed in a time series, and we know how it changes depending on the amount of energy used, 

we can generate an FO able to describe the flexibility relative to the room temperature. 

There are many more examples that can be represented. For example, a thermal storage unit works with 

the same principle of a battery, and therefore for this device it is possible to use FOs for representing 

energy flexibility, but also temperature.  

In order to show how FOs can model measures different from energy, we present a very simple example. 

 

FIGURE 4: FO FOR DESCRIBING OUTDOOR TEMPERATURE 

Suppose we want to represent outdoor temperature in Sion, for a time horizon of six hours (12 to 18) in 

a February afternoon: we have information that in the day before, temperature varied in the range 

between 3°C and 5°C at every hour between 12 and 15, and between 1°C and 4°C at every hour between 

15 and 18. We also know that the weather for the considered day should be the same, and therefore we 
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expect to have a similar pattern for the temperature. A SFO can then represent temperature for the 

described time horizon, as described in Figure 4: each slice refers to the hour starting at the time it refers 

to (e.g. the first slice refers to the one-hour time interval starting at 12 and ending at 13, and so on). 

We will see another example in the following subsection, where we will represent uncertainty for energy 

spot prices in order to model predictions for them. 

4.2. FlexOffers for Representing Predictions 

Another possible use for FOs is to represent predictions. The idea for this concept is to consider an FO 

representing the measure we want to model, reduce to zero the value flexibility, and eventually consider 

the uncertainty related to it. 

The simplest example that we can use to show this concept, is the battery described in the Running 

Example section. Suppose we want to represent a prediction for battery usage for the switching case, for 

example e1 = 1 kWh, e2 = 3 kWh, e3 = 2 kWh, e4 = e5 = 0 kWh, e6 = 1 kWh. This can be easily represented 

by a SFO with a time horizon of 6 time units, where emin1 = emax1 = 1 kWh, emin2 = emax2 = 3 kWh, and 

so on. Figure 5 shows how such a FO would look like: as the amount of flexibility is zero, it becomes a 

representation for a time series. In general, FOs can represent in this way any type of time series, and in 

particular predictions. 

 

FIGURE 5: A FO MODELLING A PREDICTION FOR BATTERY ENERGY USAGE 

A more complex scenario could be a prediction with uncertainty. An example could be as following: 

suppose we want to predict the price of energy in the spot market for the next hours. Since we have no 

control over this measure, there is no flexibility related to it. However, we can know some information 

about the energy price and its uncertainty, and we can use UFOs in order to model that. In this example, 

we will make two assumptions: first, we want to estimate the price for the first six hours of January 1st 

for the zone DK1 from NordPool1, and historical data suggest us a pattern that the price may follow. 

Second, we are in off-peak hours: this implies that the uncertainty in energy price can be described by a 

normal distribution (H.Zhou, et al., 2009), whose standard deviation can be considered to be one fifth of 

 
1 https://www.nordpoolgroup.com/ 
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the expected value. With these premises, it is possible for us to generate an UFO which models the 

predictions for the price: this can be seen in Figure 6.  

 

FIGURE 6: AN UNCERTAIN FO FOR PREDICTING SPOT ENERGY PRICPES 
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5. Demonstration 
In this section we will describe our experiments for determining the functioning of UFOs, and the code 

that has been written to implement them.  

5.1. Experimental evaluation 

To evaluate the performances of UFOs, we have run some experiments and measured the amount of 

provided flexibility. There are several metrics that can evaluate flexibility (Valsomatzis, et al., 2015), but 

in a real case, one of the most important is economic revenue (Lilliu, et al.). This metric is defined by the 

function 𝑝𝑟𝑜𝑓𝑖𝑡(𝑒) = 𝑝𝑟𝑖𝑐𝑒𝑠 ⋅ 𝑒, where e = (e1, … , eT) expresses the energy consumed at each time 

1, … , 𝑇 and prices = (prices1, … , pricesT) represents the prices for energy at time 1, …, T. Depending 

on which market we are operating in, 𝑝𝑟ices can be either the spot or imbalance prices. 

We simulated the battery B from the running example. Data for prices have been taken from a sample in 

NordPool, and include spot prices and imbalance prices between January 1, 2018, and December 31, 2018, 

for the zone DK1. Spot prices will be used for the profit function, while imbalance prices for calculating 

imbalance penalties, in case the schedule obtained by optimization is unfeasible. The battery works in 

the following context: prices are known in advance from the day-ahead market. When the FO is issued 

and optimized, but before it is executed, a bid for buying/selling energy is made, according to those 

prices: for simplicity, we assume that the bid is always accepted. The prosumer will then give/receive 

money according to it, as defined by the profit function calculated with the spot prices. However, when 

the schedule is executed, if the prosumer is unable to fulfil the bid (e.g., tries to sell energy when the 

battery is empty, or to buy it when the battery is full), this will generate imbalance in the grid, and the 

prosumer will have to pay for this imbalance. 

Our experiment works as follows. We start with B with the same settings of the charging example, and 

we choose a time horizon T and a probability threshold pt for generating and optimizing UFOs. Now, we 

want to issue two FOs in succession: one for charging the battery for the first T time units, and one for 

discharging it in the following T time units. We first estimate the value for SoC(T) that would maximize 

the profit function over the next 2T time units: call this value SoCMP. After that, we generate two UFOs: 

one for charging the battery, with SoC(0) = 0 kWh, and one for discharging it afterwards, with 

SoC(0) = SoCMP, as SoC(0) for the second FO is equal to SoC(T) for the first FO. We then optimize those 

FOs, with the objective to maximize the profit function: prices is defined by the spot market prices data 

and e being the energy variable, and the constraints on e are defined by the FO. We then check whether 

the schedules obtained by the optimization violate the constraints of the battery model; in case they do, 

we also calculate the penalty for violation. We calculate it as the minimum possible cost of the difference 

between the schedule and a feasible one, calculated as the negative profit functions, where prices are 

imbalance prices. We then repeat this procedure for the next 2T time units again and again, until the 

simulation covers a total of 365 days. This experiment is also performed with two other approaches, 

which will be the baselines: inner approximation SFOs, and an exact approach based on the LTI model 

(Lilliu, et al.). 

We have run this experiment for T = 4 and different values of pt. Results are reported in Table 1. 
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TABLE 1: RESULTS FOR ECONOMIC PROFIT (IN DKK) 

 Profit 
(before imbalance calc) 

Imbalance Costs Profit 
(after imbalance calc) 

LTI 466349 0 466349 

Inner SFOs 194547 0 194547 

UFOs, pt = 1 195137 111 195026 

UFOs, pt = 0.95 354853 62405 292448 

UFOs, pt = 0.9 397586 109885 287701 

UFOs, pt = 0.85 407356 129752 277603 

 

From the results, some important observations can be done. First, for pt = 1, UFOs behave almost exactly 

like inner SFOs, and the difference comes from numerical error on probability. Second, for lower values 

of pt, UFOs perform better than inner SFOs in terms of profits, even after considering imbalance penalties. 

In particular, inner SFOs are able to retain 41.8% of the total profits, while UFOs vary depending on pt, 

and for pt = 0.95 are able to retain 62.7% of the total profits. It has to be noted that for lower values of 

pt, this amount decreases: this is because imbalance penalties become too high, and make the profits 

decrease despite the higher amount of flexibility. 

An experiment has also been run in order to compare optimization speed between those three 

approaches (Lilliu, et al.). Results show that optimization time grows exponentially for the exact model, 

and for T = 24 optimization is performed 4.7 hours, making it unfeasible in practice; conversely, inner 

SFOs take at most 0.103 seconds for that amount of time, and the same is true for UFOs, as the type of 

constraint for optimization is the exact same as SFOs, and therefore the difference in optimization time 

is minimal, lower than 0.01 seconds in all cases. We have also measured the amount of time needed for 

generating the slices: for T = 24, it takes an amount of time lower than 0.055 seconds. Figure 7 shows this 

more in detail. 

 

FIGURE 7: OPTIMIZATION TIME FOR FOS 
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5.2. Code 

All the code used for implementing the FOs described in this deliverable is available at 

https://github.com/FabioLilliu/domOS-AAU/ . All the files are in the MATLAB language. The following files 

are contained: 

• BasicBatteryFlexOfferTester: generates FlexOffers for a battery, given the desired battery 

specifics and type of approximation. 

• Const_prob,const_AAO: generates constraints for UFOs and inner standard FOs respectively. 

• Const_prob_charging, const_AAO_chargin: generates constraints for UFOs and inner standard 

FOs respectively, for the charging case. 

• Experiment: reproduces the experiment of Section 5.1 for maximizing the profit function. 

• ExperimentForOptimizationTime: reproduces the experiment for measuring optimization time. 

• Generate_discrete_uncertaintyFO: generates an UFO for a battery, given the desired battery 

specifics. 

• Imbalance_calculation: function that calculates violation penalties as described in Section 5.1. 

• IndoorTemperatureExample: describes the example shown in Section 4.1 for modelling 

temperature with FOs. 

• PricePrediction: generates an UFO for predicting spot prices, similar to what shown in Section 

4.2. 

• prob_slices: function that receives as an input battery data, time horizon and probability 

threshold, and returns an UFO. 

In addition to this, the repository will also contain the code for the FlexOffer Agent (FOA) described in 

D4.5, which also includes the basic FO stack over which the work described in this section has been built. 

The FOA allows to receive load forecasts represented by time series and generate FOs from three 

different types of devices (wet devices, thermostatically controlled devices, battery devices) following 

two main schemes (individual, and pool-based). Further information about it can be found in D4.5. 

6. Conclusion 
This document presents the work done on task T3.3, specifically related to the extension and 

generalization of FlexOffers in order to i) be able to capture predictions, flexibility and uncertainty; ii) to 

be able to do so not only for energy, but also for other measures such as temperature and energy prices. 

We first defined the concept of FlexOffer, describing its life cycle and showing how it models flexibility. 

We then extended this concept in order to be able to model uncertainty by introducing uncertain 

FlexOffers and, after that, showed how they can be used to model predictions, and how they can be 

employed to model measures different from energy. Finally, we showed their validity through 

experiments, and provided the code needed to recreate the same examples and experiments. Future 

work in task 3.3 will be focused on a modelling methodology and guide for modelling demonstration sites 

assets, and on the integration of FlexOffers into the domOS Common Ontology and will be reported in 

the following WP3 deliverables. 

https://github.com/FabioLilliu/domOS-AAU/
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