

www.domos-project.eu

This project has received funding from the European Union’s Horizon 2020 research and innovation
program under grant agreement No 894240.

H2020 – LC – SC3 – EE – 2019 – GA 894240

Operating System for Smart Services in Buildings

D2.3 Functional Specification of the
IoT-Ecosystem

WP2 IoT for Smart Buildings

 Name Date

Prepared by
Brian Nielsen (AAU), Søren Enevoldsen (AAU), Junior
Dongo (AAU), Amir Laadhar (AAU), Nicola Cibin (AAU)

14.01.2022

Peer reviewed by Frédéric Revaz (HES-SO) 21.02.2022

Reviewed and approved by Dominique Gabioud (HES-SO) 24.02.2022

Ref. Ares(2022)1490228 - 28/02/2022

www.domos-project.eu

Deliverable: D2.3
Version: 3.1

Due date: 28.02.2022
Submission date: 28.02.2022

Dissemination level: Public

D Functional Specification of the IoT-Ecosystem Page 2

Distribution list

External Internal

European Commission x Consortium partners x

Change log

Version Date Remark / changes

1.1 14.01.2022 First Version by AAU

2.1 07.02.2022 Second version by AAU

3.1 24.02.2022 Final version by HES-SO

To be cited as

“D2.3 Functional Specification of the IoT-Ecosystem” of the HORIZON 2020 project domOS, EC Grant

Agreement No 894240.

Disclaimer

This document’s contents are not intended to replace the consultation of any applicable legal sources or

the necessary advice of a legal expert, where appropriate. All information in this document is provided

“as is” and no guarantee or warranty is given that the information is fit for any particular purpose. The

user, therefore, uses the information at its sole risk and liability. For the avoidance of all doubts, the

European Commission has no liability in respect of this document, which is merely representing the

authors' view.

www.domos-project.eu

Deliverable: D2.3
Version: 3.1

Due date: 28.02.2022
Submission date: 28.02.2022

Dissemination level: Public

D Functional Specification of the IoT-Ecosystem Page 3

Table of contents

1. Introduction .. 6

1.1. Background ... 6
1.1.1. New Smart Services .. 6

1.1.2. Digitalization of Buildings ... 6

1.1.3. Interoperability ... 6

1.1.4. Privacy and Reliability ... 7

1.1.5. domOS Ecosystem and IoT platforms ... 7

1.2. Objective ... 8

1.3. The Process ... 9

1.4. Definitions ... 10

2. Overall Architecture and domOS Reference Model ...12

2.1. Layered Model .. 12

2.2. Main Functional Principles ... 13
2.2.1. WoT Compliance ... 13

2.2.2. Building Description .. 13

2.2.3. Device (Things) Management ... 14

2.2.4. Application Management ... 14

2.2.5. Security and Privacy .. 15

2.2.6. User- and Administrative Interfaces ... 15

2.3. domOS Eco-System (Normative) .. 16

3. Platform Instantiation Guidelines (Non-normative) ..18

3.1. Use-Case Diagram ... 18
3.1.1. Use-Cases .. 19

3.2. System Structure .. 20
3.2.1. Components ... 20

3.2.2. Main Interfaces ... 25

3.3. Behaviour .. 26
3.3.1. Adding a WoT Device .. 26

3.3.2. Normal Scenario Where an Application Accesses (reads) a WoT Property 27

3.3.3. An Event Occurs in a WoT Device ... 28

3.4. IoT Semantic Interoperability Using Semantic Web Technologies 29

4. Key Interface Specifications (Normative) ...32
4.1.1. Swagger Key Interfaces Specifications.. 32

4.1.2. TDD API ... 33

4.1.3. Building Description Directory .. 33

4.1.4. Intermediary API ... 34

4.1.5. Authentication .. 34

4.2. Building Description .. 34

5. Conclusion and Future Work ...36

5.1. Conclusion .. 36

www.domos-project.eu

Deliverable: D2.3
Version: 3.1

Due date: 28.02.2022
Submission date: 28.02.2022

Dissemination level: Public

D Functional Specification of the IoT-Ecosystem Page 4

5.2. Future work .. 36

6. References ..37

Appendix A: Requirements Review and Consolidation ...38

Appendix B: Requirements Links and Traceability ..45

7. Objectives and Success Criteria ..46

7.1. Overview ... 47
7.1.1. Overview of the IoT Ecosystem .. 47

7.2. Functional Requirements.. 48
7.2.1. Requirements for Platforms ... 48

7.2.2. Requirement for Applications ... 48

7.2.3. Requirement for Smart Systems ... 48

7.2.4. Security Requirements ... 49

7.2.5. Requirements on Semantics ... 49

7.2.6. Requirements on Privacy .. 49

7.2.7. Requirements on Deployment Topology .. 50

7.2.8. Support of Privacy ... 51

7.3. Non-Functional Requirements .. 51
7.3.1. Compliance with Recognized IoT / Web Standards .. 51

7.3.2. Safety .. 52

7.3.3. Usability .. 53

7.3.4. Performance ... 53

7.4. Smart System Description... 53

7.5. Subscription to an Application .. 53

7.6. Intermediary Function .. 54

7.7. Smart Systems Directory .. 55

List of figures

Figure 1: SGAM Interoperability Layers (Reproduced from (CEN-CENELEC-ETSI Smart Grid Coordination

Group, 2012)) ...7

Figure 2: domOS Eco-System Development Phases ..9

Figure 3: Layered Model of the domOS IoT Eco-System ... 12

Figure 4: High-Level Use-Cases for the domOS Platform .. 18

Figure 5: domOS Component Diagram ... 21

Figure 6: Components involved in WoT Interactions .. 26

Figure 7: Adding a new Thing Description .. 26

Figure 8: Application Accessing a WoT Property Affordance in an open platform 27

Figure 9: Application Accessing a WoT Property in a Closed Platform ... 28

Figure 10: Application Listening to Events .. 29

www.domos-project.eu

Deliverable: D2.3
Version: 3.1

Due date: 28.02.2022
Submission date: 28.02.2022

Dissemination level: Public

D Functional Specification of the IoT-Ecosystem Page 5

Figure 11: Semantic Search Sequence Diagram .. 30

Figure 12: Compliance Check Sequence Diagram ... 31

Figure 13: Example Swagger Interface .. 32

Figure 14: Principal Structure of the Building Description .. 34

Figure 15: Example of a Building Description in JSON-LD ... 35

Figure 16: Elements in the IoT Ecosystem .. 47

Figure 17: Two Possible Topologies: (a) Distributed Cloud Solution (B) Edge Solution 50

Figure 18: Illustration of the Intermediary concept in the WoT architecture (W3C (WoT Architecture),

2020) ... 54

Figure 19: Implementation of the intermediary based on the servient concept (W3C (WoT Architecture),

2020) ... 54

List of tables

Table 1: Definitions ... 10

Table 2: domOS Eco-System Specification .. 16

Table 3: Requirements Review.. 39

Table 4: Requirements Traceability Labels ... 45

Table 5: Success Criteria .. 46

Table 6: Status of W3C WoT standards ... 51

Terms, definitions, and abbreviated terms

DMP Data Management Plan

DPIA Data Protection Impact Assessment

DPO Data Protection Officer

GDPR General Data Protection Regulation

PC Project Coordinator

TRL Technology Readiness Level

RDF Resource Description Framework

WoT Web of Things

DOPL domOS Platform

dCO domOS Common Ontology

www.domos-project.eu

Deliverable: D2.3
Version: 3.1

Due date: 28.02.2022
Submission date: 28.02.2022

Dissemination level: Public

D Functional Specification of the IoT-Ecosystem Page 6

1. Introduction

1.1. Background

1.1.1. New Smart Services

Soon new automated intelligent digital services will help to improve the energy efficiency, energy

flexibility, comfort, and convenience of residential buildings needed to achieve the urgent sustainability

targets. They will help integrating buildings with the current energy systems as well as enable new models

based on integrated energy systems, large scale renewal sources, and local energy communities. These

services typically optimize by combining several knowledge sources such as weather forecast,

production- and consumption-forecasts (at local, regional, or national levels). They will typically be

deployed as remote or cloud services that require access via the Internet to sensing, automation, and

control offered by the buildings.

1.1.2. Digitalization of Buildings

Whilst digitizing new and modern high-end buildings is common, retrofitting existing (of which there are

most) buildings and appliances is more challenging. One challenge is that the building installations are

more cumbersome to instrument and more difficult to establish interference free efficient

communication. A related challenge is that the upgrade technologies are often siloed and non-

interoperable that leads to islanded operation. This contradicts the needs of the envisioned future smart

services. We see the Internet of Things (IoT) as a key enabler for smart services.

1.1.3. Interoperability

Providing automated access to devices from multiple different vendors requires that the devices are open

and interoperable a priori or that they can be made interoperable by providing a suitable abstraction or

conversion layer(s).

Interoperability is the ability of two or more devices from the same vendor, or different vendors, to

exchange information and use that information for correct co-operation (IEC61850-2010).

It is important to recognize that interoperation goes beyond basic network connectivity and protocols,

but extends to sematic based information exchange and functionality, as captured by the so-called

interoperability layers. As example we provide Figure 1 that presents the key interoperability layers for

the SGAM Smart Grid Architecture Model. domOS focus mostly on the communication layer (via the Web

of Things standard) and information layer (via the domOS common ontology, see (domOS D3.2, 2021)).

www.domos-project.eu

Deliverable: D2.3
Version: 3.1

Due date: 28.02.2022
Submission date: 28.02.2022

Dissemination level: Public

D Functional Specification of the IoT-Ecosystem Page 7

FIGURE 1: SGAM INTEROPERABILITY LAYERS (REPRODUCED FROM (CEN-CENELEC-ETSI SMART GRID COORDINATION

GROUP, 2012))

1.1.4. Privacy and Reliability

Opening – in particular private – buildings for remote or third-party sensing and actuating, requires that

the access must be strictly controlled for privacy and security reasons. The data collected from these

sensors, even as metering data, may potentially be abused to infer or leak information about occupancy

behaviour. Only authenticated applications should be allowed to receive building data, and only the

minimum data needed for their operation.

Reliability is a further challenge: devices may fail and need replacement, batteries are not replaced,

software may be buggy, networks and Internet access fails intermittently, remote clouds and services

also fail. In any non-trivial distributed system, such failures should be considered normal events, and not

exceptional. The whole architecture and model for service delivery must be constructed to tolerate such

failures, and fall-back to local control loops, that preserve a certain level of functionality, albeit less

optimised.

1.1.5. domOS Ecosystem and IoT platforms

From a domOS perspective an IoT-eco-system is an open collection of collaborating IoT-devices, IT-

services, applications, and system components used to deliver smart (energy, living, etc.) services to

buildings.

An IoT platform is the required hardware and system software components needed to facilitate the

delivery a business service to a set of costumers. The platform is thus a central part of an eco-system

that bridges applications and IoT devices. By developing the platforms from common concepts and

specifications, the scope of IoT devices and applications are greatly improved and makes porting between

platform instances easier.

www.domos-project.eu

Deliverable: D2.3
Version: 3.1

Due date: 28.02.2022
Submission date: 28.02.2022

Dissemination level: Public

D Functional Specification of the IoT-Ecosystem Page 8

A platform instance is a specific hardware and software implementation of the common concepts

developed and delivered by a given vendor or a given platform operator.

Platform instances can vary greatly in application characteristics and range in deployment size, resulting

in different instances. As illustrative examples, the platform instances can range in complexity from

simple to very complex:

Simple Gateway: A single smart-service is delivered through a home gateway, executing a single

application, e.g., a heating optimization service. It is typically supplied from the service provider

when a subscription is engaged and governed by a manually engaged contract.

Closed Platform: A moderate number of applications are delivered under the responsibility of a single

service provider typically to a larger collecting of buildings or apartments. Hence, being a closed

platform (attached applications and devices are controlled by, and under responsibility of, the

service provider also acting as platform operator) makes it easier for (but also the responsibility

of) the vendor to ensure privacy and security on behalf of its customers. But the platform must

scale sufficiently to handle many buildings and customers performance- and management-wise.

The platform is typically deployed in the service provider’s cloud. Applications are activated by

signing a contract with the service provider.

Open Platform: The building owner is in control of the dynamic set of devices attached to his building,

and the dynamic set of applications he subscribes to. Applications may be developed by 3rd party

developers and potentially be advertised in an application marketplace and activated by the

building owner on demand. In such a platform strong security, access control, and privacy

management features must be implemented. The platform is deployed in a cloud and operated

by an independent platform operator.

The domOS project will prototype three different platform instances (SION, Cloud.IO, Arrowhead) having

different application areas, deployment scale, and demonstrator goals. The functional specification must

consequently be tailorable and allow sufficient flexibility to cater for the needs of the different platforms

whilst providing sufficient similarity to facilitate industrialization of smart buildings and services.

1.2. Objective

To meet these overall challenges, the project will define the domOS IoT eco-system based on the high-

level requirements defined in “D2.1 Report on Requirement Analysis for IoT Ecosystems” (domOS D2.1,

2021). This entails:

• A reference-model that shows the conceptual layering of the eco-system.

• A classification of what features are mandated and optional

• Definition of the major components and roles.

• Suggested implementation structure, behaviour, and technologies.

• Concise specification of the core concepts, interfaces, and APIs.

www.domos-project.eu

Deliverable: D2.3
Version: 3.1

Due date: 28.02.2022
Submission date: 28.02.2022

Dissemination level: Public

D Functional Specification of the IoT-Ecosystem Page 9

1.3. The Process

The development of the eco-system progress according to the overall plan illustrated in Figure 2. Prior to

the functional specification, the technology foundation has been reviewed, a set of high-level

requirements formulated, the first ontology version proposed (see (domOS D3.2, 2021)), and proof-of-

concept of WoT intermediaries and things directory prototypes have been implemented to serve as

additional input.

As high-level requirements are typically neither directly implementable, consistent, nor complete, they

have been reviewed and consolidated. To identify the core requirements for further functional

specification of the eco-system, the MOSCOW prioritization principles was applied. The details of this

particular process are exposed in Appendix A and B.

Based on these specifications, the definition of each platform instance follows a similar process. As each

platform is tailored for different contexts and targets different objectives, each has its own concept

definition, requirements, and functional specifications. It is assumed that each instance is open to a priori

unknown applications and a priori unknown smart systems, but the extend is defined in its own concept

definition.

In its requirements specification, each Platform decides to rely on the domOS ecosystem to implement

the openness, and in its functional specification, each Platform takes over the Core features of the domOS

ecosystem specification and implements by its own means the Instance features.

The process will continue by detailed technical design and development of the three domOS platform

instances that will be evaluated and demonstrated by the use-cases on flexible energy services.

FIGURE 2: DOMOS ECO-SYSTEM DEVELOPMENT PHASES

www.domos-project.eu

Deliverable: D2.3
Version: 3.1

Due date: 28.02.2022
Submission date: 28.02.2022

Dissemination level: Public

D Functional Specification of the IoT-Ecosystem Page 10

1.4. Definitions

TABLE 1: DEFINITIONS

Connected
system

Digital system in a Container providing
a data interface for an external
information system

A Wi-Fi heat pump, a SunSpec
compatible solar inverter, a Zaptec
charging station for electrical vehicle, a Z-
Wave controller with its wireless
peripherals

Smart system Connected system made compliant
with the domOS IoT ecosystem

A connected system together with a
cloud hosted domOS adapter
component.

domOS WoT
thing

domOS compliant WoT thing Thermostat as defined in the domOS
ontology (dco:thermostat)

Customer Natural (or legal) person in charge of
the management of a Container and
using a Service.

An adult inhabitant in a household, a
facility operation in a service building or
in a multi-family residential building

Container In this context, premises where the
collection of Smart systems managed
by a Customer are located: an
apartment in a multi-family residential
building, a single-family house, the
communal area in a building…

The single-family house where the four
above mentioned smart systems are
located.

Application Software component interacting with
one or more Smart systems located in
a Building.

A component aiming at maximising the
self-consumption of solar power by the
heat pump and the electrical vehicle
charging station

Service
provider

Service Provider delivers a business
service through an application

NeoGrid

Business-
Service

Interplay of an Application and of one
or several Smart systems, generating
an added value for a Customer.

Self-consumption optimisation

SoA-Service A software component that can
function independently and offer a
certain functionality via an API to other
software client components

Energy consumption forecast service
Energy price forecast service
Public building information registry (e.g.,
Danish “BBR”)

Platform Software environment acting as a
mediation entity between on one side
Containers and their Smart systems
and on the side Applications.

A cloud hosted utility enabling self-
consumption optimisation application to
interact with the building hosting a solar
inverter, a heat pump and an electrical
vehicle charging station.

domOS IoT
ecosystem

ICT architecture and concepts
describing how Applications, Platforms
and Smart systems may collaborate.

SoA Service Oriented Architecture. An IT-
Architecture where an application
system is delivered by exposing,
composing, coordinating multiple
smaller functional service components.

Web-services

www.domos-project.eu

Deliverable: D2.3
Version: 3.1

Due date: 28.02.2022
Submission date: 28.02.2022

Dissemination level: Public

D Functional Specification of the IoT-Ecosystem Page 11

WoT

IoT Architecture defined by WoT
Consortium
WoT Thing,
WoT Consumer,
WoT Intermediary,
WoT Things Description (TD),
WoT Things Directory (TDD)

RDF Resource Description Framework. A
W3C standard for describing the meta-
data needed for data exchange from
heterogeneous sources

SPARQL SPARQL is an RDF query language—
that is, a semantic query language for
databases—able to retrieve and
manipulate data stored in Resource
Description Framework (RDF) format.

www.domos-project.eu

Deliverable: D2.3
Version: 3.1

Due date: 28.02.2022
Submission date: 28.02.2022

Dissemination level: Public

D Functional Specification of the IoT-Ecosystem Page 12

2. Overall Architecture and domOS Reference Model

2.1. Layered Model

The purpose of the domOS eco-system is to enable future smart energy applications to seamlessly

connect to sensing and actuating devices in new or retrofitted buildings. Figure 3 shows a conceptual

layered model of the domOS eco-system and its major functional components. The figure also contrasts

the domOS layers with a typical IoT stack.

FIGURE 3: LAYERED MODEL OF THE DOMOS IOT ECO-SYSTEM

The lowest layer is the physical structure and processes (e.g., thermodynamics) in the buildings. On top

of that is instrumentation by adding sensing and actuating capabilities typically hosted by wireless sensor

network devices. To make these WoT compatible, a further abstraction and communication layer known

as adaptors may need to be added to connected systems that are not WoT native. According to the

terminology (Table 1), these are referred in domOS as “smart systems”. When made domOS compliant

by adding the necessary semantic annotation, we henceforward refer to them as “domOS (WoT) things”.

The next conceptual layer is the platform layer that bridges the gap between smart applications and raw

devices by providing a common, secure, and privacy aware semantic interoperability layer.

The upper layer hosts the potential applications using the platform.

The Service Provider delivers a business service through an application. Applications are registered on

the platform along with an application manifest. The service provider may need to approve the

application activation for a given building owner, as this may require setting up a billing- and legal-

contract which is currently out-of-scope for the platform.

www.domos-project.eu

Deliverable: D2.3
Version: 3.1

Due date: 28.02.2022
Submission date: 28.02.2022

Dissemination level: Public

D Functional Specification of the IoT-Ecosystem Page 13

The building owner (customer) is the owner of a container – normally its inhabitants. The owner deploys

connected systems, activates services, and manages their security properties. For multi-apartment

buildings, the housing association may take the role as owner, and then assumes the responsibility to get

the required approvals from the tenants.

The platform operator is responsible for operating a platform instance on behalf of customers and

service providers, i.e., deploys the platform, authenticates, and registers applications to be listed,

manages users/owners, and oversees its correct operation.

2.2. Main Functional Principles

The main principles behind the platform as derived from the process outlined in Section 1.3 are outlined

below.

2.2.1. WoT Compliance

• WoT is used as common device abstractions. If a device is not WoT compliant, an “adaptor”

must be created that facilitates communication to the device using the WoT protocol and

provide a suitable TD. The domOS platform does not specify where the adaptors and

underlying device drivers are hosted, i.e., whether they are on a gateway, in a cloud, or co-

located with the platform or not. The things description should also be made compliant by

semantically annotating it using the domOS ontology.

• A thing description (TD) (W3C (WoT TD), 2020) supplied by the smart system manufacturer

(or other external party) is registered in the Things Description Directory (TDD) by the

building owner using suitable user interfaces when deploying the smart system device. The

W3C WoT (W3C (WoT TD), 2020) recommends the semantic annotation of TDs using

semantic resources. We recommend the semantic annotation of thing descriptions using

domOS Common Ontology (dCO), available at https://w3id.org/dco, as unique source of

semantic truth for domOS project. A thing and its interaction affordance (properties, actions

and events) can be annotated using the “@Type” field (e.g., “@type”:

“dco:temperatureSensor”, “@type”: “dco:humidityPropertyAffordance”). The units of

measurements of the interaction affordance can be annotated using dCO (e.g., “unit”:

“dco:Celsius”).

• A running application is a WoT consumer. An application may have an internal structure

(e.g., SoA micro-services) but is a single artefact, as seen from the platform perspective.

• A WoT Intermediary may act as a proxy that decouples applications and smart systems by

hiding WoT device credentials from applications. It may check that every access to a

property, device, or affordance has been granted permission by the building owner.

2.2.2. Building Description

• A Building Description is a description that defines an abstract description of the building

and its properties as needed by the smart services. It consists of

o a description of building specific metadata (e.g., total space, thermal capacity,

envelope type),

https://w3id.org/dco

www.domos-project.eu

Deliverable: D2.3
Version: 3.1

Due date: 28.02.2022
Submission date: 28.02.2022

Dissemination level: Public

D Functional Specification of the IoT-Ecosystem Page 14

o a description of the structure of the building (e.g., floors, apartments, rooms),

o internal building tasks (e.g., dco:spaceHeatingTask): The metadata of tasks are

defined along with the list of the involved devices,

o the static properties of the spaces (e.g., thermal capacities, space),

o the list of the device types that are installed and supported by the building,

o possibly further static properties of the devices, (e.g., heating surface areas,

maximum on time, and their capacities),

o a semantically enhanced description of the underlying “things”, and their

semantic relation to and dependencies on other “things”, and

o a link to the “Things” description needed to interact with the underlying

physical device

• The building description properties are defined by the domOS Common Ontology (dCO),

and the schemas needed to process it is derived from that.

2.2.3. Device (Things) Management

A platform may need to support management of things:

• The platform may offer support for management of the life cycle of the Things: commissioning,

decommissioning, pausing, replacing, etc.

• Health Monitoring of devices enabling fault tolerant operation (fall back to a reduced service

level) through user notifications and notifications to involved services. The failure detection can

be basic connectivity checks via heartbeat or probing mechanisms, or advanced functional

checks, diagnosis, and anomaly detection.

2.2.4. Application Management

A platform may need to support management of applications:

• Lifecycle management of applications: Subscription and activation, pausing, termination, etc.

• Monitoring and failure detection (connectivity checks via heartbeat or probing mechanisms)

enabling failure notifications and fallback to local control loop.

• Authentication. Only approved users operate the platform and its managed containers. Only

approved applications appear on the platform.

• Compatibility check: the platform prevents launching an application that requires features

(measuring and control points) that are not provisioned in the building. We remark that checking

the correct operation of an application (or set thereof) is untrivial (Le Guilly, 2016) (Pedersen,

2018) and beyond the responsibility of the eco-system.

• Compatibility check: the platform enables application to check that the building is compatible

with it by enabling it to check whether the building is equipped with the required set of

measuring and control points for that application. If not, it will go into operational mode, and

quit after notifying the user.

• Feature interactions and correctness: the platform may give a warning if the user tries to

activate an application that writes to a property that is already potentially written by another

www.domos-project.eu

Deliverable: D2.3
Version: 3.1

Due date: 28.02.2022
Submission date: 28.02.2022

Dissemination level: Public

D Functional Specification of the IoT-Ecosystem Page 15

application. We remark that this is insufficient to guard against undesired feature interactions1

(Le Guilly, et al., 2016), but nevertheless a useful heuristic. We also remark that checking the

correct operation of an application (or set thereof) is untrivial (Le Guilly, 2016) (Pedersen, 2018)

and beyond the responsibility of the eco-system.

2.2.5. Security and Privacy

There are several facets of security and privacy.

• Information hiding: Only the necessary information about a container’s building description is

revealed to applications, and users must explicitly grant the necessary access rights to the

requested properties.

• Transparency: The owner is provided with a comprehensible view of exactly which building

properties and connected systems that an application has access to, and in what mode.

• Authentication: Access to a container and devices is only provided by authenticated and

authorised applications.

• A platform may support multi-tenancy, i.e., ensure that the information related to multiple

buildings and owners are kept isolated.

• An access control mechanism is needed. It can for example be based on the building owner

granting simple “Read/Write” permissions. This can be done on different granularities, e.g.,

container, things, or WoT property levels and be granted on a per application basis through

specification of an access control matrix. For example, to specify access control on affordance

level, an annotation is required to indicate:

o Calling an action affordance requires both R+W rights

o Traversing a link- affordance requires R rights

o An interaction affordance can be read by an application if it has been granted R

permissions

o An interaction affordance can be written by an application if it has been granted W

permissions

• Control: Any access to the smart systems is under control of the platform.

2.2.6. User- and Administrative Interfaces

• The end-user facing user interfaces are primarily web-based (“web-apps”) graphical user

interfaces allowing “ordinary” people to manage their container, devices, and subscriptions.

• Other interfaces may allow import of RDF-data sources.

1 An example of undesired feature interaction that cannot be detected by overlapping writes is a heating
controller that tries to keep temperature, while an indoor climate application opens the windows to reduce
humidity. A second example is an HVAC application that opens windows whose movement may trigger the
alarm systems motion sensors.

www.domos-project.eu

Deliverable: D2.3
Version: 3.1

Due date: 28.02.2022
Submission date: 28.02.2022

Dissemination level: Public

D Functional Specification of the IoT-Ecosystem Page 16

The defined platform is defined functionally, that is, it does not specify where its components are

deployed (i.e., on an existing or dedicated gateway/edge, cloud, or combination thereof), similarly no

extra-functional requirements are specified.

2.3. domOS Eco-System (Normative)

As elaborated in Section 1.1.5, the domOS ecosystem functional specification must be flexible and

tailorable to deployment flexible to handle small installations and large installations in different

application areas.

We therefore classify the list of suggested features as either being a mandatory, recommended, or

optional feature in a platform instance. Furthermore, the detailed specification and behaviour of a

feature may be defined by domOS (so-called core feature) or be defined the platform. Following this

principle whilst respecting the eco-system requirements, the domOS ecosystem is specified by Table 2.

TABLE 2: DOMOS ECO-SYSTEM SPECIFICATION

Feature Level

(M) Mandatory
(R) Recommended
(O) Optional

Specification
Responsible

Domos Core, or
Platform instance

Note

Devices as DCO annotated WoT Things M Core 1)

Applications as WoT Consumers M Core

Building Descriptions using DCO M Core 2)

WoT TDD R Core 2)

WoT Intermediaries R Instance 3)

Forced WoT intermediation R for closed platform
M for open platform

Instance

Privacy Rules, Information Hiding M Instance 4)

Transparent Security and Privacy status view R Instance

Access-control R
M for open platform

Instances

Application Authentication and Authorization R Core 5)

Platform multi-tenancy R Instance

Device management and monitoring O Instance

Application subscription and lifecycle management O Instance

Application compatibility check and feature
interaction check

O Instance

User- and- Administrative Interfaces O Instance

1) DomOS Common Ontology

2) For a WoT consumer (application) to function, it needs to retrieve the TDs (things descriptions)

for the devices it interacts with. Whilst it is technically possible to build a WoT consumer by

retrieving the TD from elsewhere, e.g., by embedding it in the building description or loading

from a file, doing so is not generally the best way. The strongly recommended general way is to

retrieve the TD by following the WoT discovery (W3C (WoT Discovery), 2021) specification and

www.domos-project.eu

Deliverable: D2.3
Version: 3.1

Due date: 28.02.2022
Submission date: 28.02.2022

Dissemination level: Public

D Functional Specification of the IoT-Ecosystem Page 17

serve TDs via a TDD (things description directory) to enable a standardized, scalable,

maintainable, and searchable device discovery mechanism. Access is illustrated in Figure 9.

3) Whilst the Wot Intermediaries are not mandated, it is a useful mechanism to solve several

principal problems.

a. Forced intermediation

b. Enforce access control

c. Device abstraction, aggregation, and local processing

d. Caching and storing last known values of “things”

Access via an Intermediary enforcing access control is illustrated in Figure 8.

4) A platform instance must specify how it deals with security and privacy. The mechanisms and

policies may vary among instances.

5) If authentication needs to be performed, the platform is required to specify how this

Authentication and Identity management is done. Currently the widely used and industrially

accepted is to be OAUTH2. Hence, this is the current recommendation for domOS.

www.domos-project.eu

Deliverable: D2.3
Version: 3.1

Due date: 28.02.2022
Submission date: 28.02.2022

Dissemination level: Public

D Functional Specification of the IoT-Ecosystem Page 18

3. Platform Instantiation Guidelines (Non-normative)
This section elaborate on how a larger platform may be structured and behave. It provides suggestions

about structure, behaviour, and possible implementation technologies.

3.1. Use-Case Diagram

The main use-cases for the domOS platform are captured in Figure 4. To keep focus on essential

behaviour, it excludes simple use-cases for creating, reading, updating, and deleting registered data in

the platform.

FIGURE 4: HIGH-LEVEL USE-CASES FOR THE DOMOS PLATFORM

www.domos-project.eu

Deliverable: D2.3
Version: 3.1

Due date: 28.02.2022
Submission date: 28.02.2022

Dissemination level: Public

D Functional Specification of the IoT-Ecosystem Page 19

3.1.1. Use-Cases

Register application

• The platform operator receives a request from the service provider to list an application on the

platform.

• The operator registers an application as available in the platform. This includes registering an

application description, the manifest, an activation endpoint (e.g., an API URL, or a web-hook)

and security credentials that the platform requires to be able to activate the application. The

necessary information is received out-of-band from the service provider.

Subscribing and activating application

• The building owner browses the potential applications.

• Attempting to activate presents the application’s manifest that owner needs to approve.

• Once also the service provider has agreed to the activation, the application receives the building

description from the Building Description Directory (BDD) and explores the provided information

about the building and deployed devices. This includes the number and types of the devices and

spaces. Only the parts of the building description - as filtered by the manifest declarations - is

returned to the application.

• The application checks that the required set of devices and interaction affordances are available.

• The application requests access to the required list of specific things and specific affordances. A

request is automatically denied if the requested device type is not listed in the application

manifest.

• The user may auto-approve the access to things that matches the manifest, or the user may

choose to review details (specific devices and access mode); The owner approves the request

(all-or-nothing) as we assume that all requested properties are necessary for the correct

functioning of the application.

• Once approved the application starts functioning.

Intermediary function

• The application requests the TD it needs.

• The platform returns the TD for the things intermediary.

• The application accesses an affordance on the thing.

• The intermediary gets the request, checks permissions, and relays the request (and response) to

(and from) the underlying thing.

• Bypassing the intermediary function is only possible when the manifest has added a “RAW

ACCESS” annotation to the device type, and the user has approved this provided suitable warning.

The platform returns the TD for the smart thing.

Registering/Updating TD

• The building Owner prepares and annotates the Thing Description of the things it wants to

register or update.

www.domos-project.eu

Deliverable: D2.3
Version: 3.1

Due date: 28.02.2022
Submission date: 28.02.2022

Dissemination level: Public

D Functional Specification of the IoT-Ecosystem Page 20

• The TD is submitted to the TDD and saved after a validation.

• A TD can be updated and removed from the TDD.

Building modelling

• Using the domOS common ontology, the building owner describes the building structure

(division into floors, rooms, and spaces), its metadata, and existing IoT things devices.

• The owner annotates domOS device types (as defined in the ontology) in the appropriate

building spaces.

• The building owner provides a link (access URL) between the device type and the actual domOS

thing that supplies the actual functionality of the specified device type. The installed things are

assumed to be registered in the TDD.

3.2. System Structure

3.2.1. Components

The Platform will need multiple components. For management, the Platform operator will need the

ability to manage the permitted Applications and to manage Customers. The Customers will need to

manage their Container by integrating Smart Things and adding semantic information. The Platform will

contain components to handle proxying for Application initiated interactions with WoT devices, but also

a component to handle communications initiated by the device such as events. Various credentials will

need to be handled carefully, including the ability to verify Applications, Components, Customers, and

the Customer will need to add to its Container the necessary credentials to interact with the WoT devices.

www.domos-project.eu

Deliverable: D2.3
Version: 3.1

Due date: 28.02.2022
Submission date: 28.02.2022

Dissemination level: Public

D Functional Specification of the IoT-Ecosystem Page 21

FIGURE 5: DOMOS COMPONENT DIAGRAM

The following paragraphs define functional responsibilities of each component.

3.2.1.1. Container Management

The components in the Container Management package implement the functions and storage that is

logically needed for each container.

TDD - Things Description Directory

– Stores things descriptions (possibly in the Semantic Knowledge Base).

– Provides access to the Thing Descriptions stored in the Things Directory by serving the API

requests (serves HTTP requests, parses request, routing, etc.)

www.domos-project.eu

Deliverable: D2.3
Version: 3.1

Due date: 28.02.2022
Submission date: 28.02.2022

Dissemination level: Public

D Functional Specification of the IoT-Ecosystem Page 22

– Serves semantic search for Thing Descriptions and their metadata from the Semantic Knowledge

Base.

– CRUD functionality for things (as suggested by to the WoT Specification (W3C (WoT Discovery),

2021)) https://www.w3.org/TR/wot-discovery/#exploration-directory-api-registration

BDD – Building Description Directory

– Similar functionality as “Things Description Directory” but provides access to the Building

Description stored in the Building Description Directory (possibly using the Semantic Knowledge

Base).

– Ensures semantic validity of the building description using the Semantic Validation component:

e.g., ensure that Things are placed in spaces actually defined by the structure of the building, and

that all required semantic annotations are completed.

– Serves semantic search of Building properties.

– Stores temporary building descriptions being created by the building editor.

– Serves Semantic search of Building- (and consequently Things-) descriptions based on the

Semantic Knowledge Base.

Semantic Validation

– Semantic search allows WoT consumers to search for metadata and IoT devices without having

any prior knowledge about them. The semantic search is based on contextual information in a

smart building.

– Semantic Validation supports the Container Owner, via the Building and Thing Description Editor,

to augment his Building Description with the necessary semantics.

– Semantic Search provides more intelligent searching than just reading collections of semantic

data. (Thing Descriptions and Building Descriptions can be stored in the Semantic Knowledge

Base to allow more advanced semantic search).

– Semantic validation aims also to semantically validate Thing Descriptions and Building

Descriptions, making sure that they do not include inconsistencies. For instance, a thing

description of a temperature sensor cannot measure the power property.

Semantic Knowledge Base

– Provides one source of semantic truths. The semantic knowledge base stores the RDF

instantiation of Thing Descriptions and Building Descriptions.

– It is also thought of as an abstraction to gather useful query logic to avoid duplication in other

services, and also to separate the underlying implementation from the actual query needs.

Thing Credentials & Permissions

– Stores the actual credentials to be used by the Intermediary to fulfil an Application interaction.

– It also stores permissions for which user (application) ids may access which Thing affordance.

https://www.w3.org/TR/wot-discovery/#exploration-directory-api-registration

www.domos-project.eu

Deliverable: D2.3
Version: 3.1

Due date: 28.02.2022
Submission date: 28.02.2022

Dissemination level: Public

D Functional Specification of the IoT-Ecosystem Page 23

3.2.1.2. Security - Authentication, and Authorization

To support the necessary security and privacy requirements, the platform must authenticate all requests

and all communication must be done over authenticated encryption (e.g., TLS/HTTPS). Each user on the

platform, which includes platform operator, applications, container owners, and internal platform

services have an ID. In addition, depending on how the user contacts the platform, they may have other

information. In particular, with respect to applications and the IAM (using OAuth2):

- Applications and components have a secret,

- Platform administrators and container owners may have username and password, also another

factor of authentication (2-factor).

The particular mechanism used to authenticate components internal to the platform is left unspecified.

Component as mentioned could also be users in the IAM component authenticated by the JWT in their

access key, or components could be preconfigured with digital certificates.

Security checks are pervasive in the platform, and we consider checks that happens on (a) any requests,

(b) when a particular operation is done in the platform, and (c) when an application service interacts with

WoT devices via the intermediary component.

a. For any request to even be considered for processing in the platform, the sender must be

authenticated and present a valid access key. The only exceptions are the core functionality of

the IAM (Identity and Access Management) component to acquire an access key, and the

Platform Management service (which can tell you how to find the IAM and other components).

Access keys are acquired by contacting the IAM with the ID and the extra information and may

have a limited time of validity upon which another has to be reacquired or refreshed.

b. With a valid access key, users’ requests are now processed by the platform. Components

(including the User Permissions component itself), check with the User Permissions component

that the request is to be permitted, before processing it.

c. Request containing WoT interactions with the platform’s Intermediary component are also

checked against the Thing Credentials & Permissions component before being processed.

3.2.1.3. Things Communication

Things Lifecycle Management

- Supports the planned and unplanned replacement of Things in a Building to minimize disruptions

to application services by allowing a new device to replace an old one with similar capability. The

lifecycle states are also elaborated in the WoT draft specification (W3C (WoT Architecture 1.1),

2020).

Thing Health Monitor

- Monitors defined devices to see if connection can be established and reports non-recoverable

errors to the building owner and enables applications using the device to discover the presence

of errors.

www.domos-project.eu

Deliverable: D2.3
Version: 3.1

Due date: 28.02.2022
Submission date: 28.02.2022

Dissemination level: Public

D Functional Specification of the IoT-Ecosystem Page 24

- It could use information from the Intermediator component about its recent communications.

Intermediary

- Act as an WoT intermediary and is the entry point for all Application service interactions with

WoT devices using WoT communication. This component separates Applications from Containers.

3.2.1.4. Application Management

Application Health Management

- Checks that a subscribed application is alive and responsive by implementing a suitable failure

detection mechanism, typically by monitoring the communication from the application, probing

it by calling its web-hook, or by detecting missing “heart-beats” from the application. If it is

suspected that the application cannot reach the platform, or vice versa, for a prolonged period,

and automated recovery attempts are unsuccessful, the owners, application provider, and

platform operators are alerted.

Application Lifecycle Monitoring

- Similar to things, an application also has a lifecycle where the status of the application changes

during lifetime (“onboarding”, “subscribed”, “active”, “paused”, “unsubscribed”,

“decommissioned”, etc.). The platform may need to react to these changes, e.g., if the

application is updated, it may need to access further devices, and hence need the user to re-

approve the application.

3.2.1.5. Platform Management

A platform implementation may consist of multiple components that are potentially deployed on

different devices (e.g., building gateway(s) and a cloud). Therefore, the platform should have

functionalities to maintain the deployment of the platform itself, i.e., register and maintain the location

and execution status of its (potentially) distributed components.

Platform Health Monitor

- Monitors the necessary components for uptime and errors of the platform to prevent

interruptions. Notifies platform operators such that malfunctions can be remedied immediately.

Service Registry

- To support the various deployment possibilities of the platform, this component act as the

registry where components can query for the information on how to reach other components.

Might also contain public keys to authenticate those components.

3.2.1.6. Administrative Interfaces

The administrative interfaces contain the graphical (web-based) user interface (owners, operators,

application providers) functionality to register and manage things, register, and manage owners, register,

www.domos-project.eu

Deliverable: D2.3
Version: 3.1

Due date: 28.02.2022
Submission date: 28.02.2022

Dissemination level: Public

D Functional Specification of the IoT-Ecosystem Page 25

and manage applications. It also enables owners to construct building descriptions, and to subscribe to

applications.

Things Registration

- Enables the activation/deactivation of an already described Thing.

- Provides user interface for administrating things credentials

- Provides user-interface for managing the life cycle of the Thing.

Owner Registration

- Registration and editing of Building owners’ personal data, and owned container(s).

- User account management

Application Registration

- Applications undergoes a registration process by the platform operator.

Subscription Manager

- Supports building owners in subscribing approved applications to their container.

- Keep track of the current subscription of applications to building owners.

Building & Thing Description Editor

- Enables the insertion of a building description for a container.

- Optionally, supports iterative modelling of the building description with a graphical interface.

- Provides detailed information about semantic validity of the building description to ensure

compliance with the ontology.

- Provides the owner with an overview of the privacy status of his building, i.e., which applications

are active and their access rights (which things and affordances are accessed by the application

in what R/W-mode).

3.2.2. Main Interfaces

Interactions with WoT devices works under the WoT architecture where applications, as consumers,

interact with things, with the platform as an intermediary. If the application has not already identified

the interaction affordances previously during subscription activation, it can, using the TDD (Things

Description Directory), and the BDD (Building Description Directory), query for Things to interact with

using the Semantic Search capability. When receiving a WoT interaction, the Intermediary component

checks whether the Interaction is allowed and retrieves the credentials necessary to authenticate with

the WoT device. Then it performs the interaction with the thing with itself as the consumer and relays

the response back to the application.

www.domos-project.eu

Deliverable: D2.3
Version: 3.1

Due date: 28.02.2022
Submission date: 28.02.2022

Dissemination level: Public

D Functional Specification of the IoT-Ecosystem Page 26

FIGURE 6: COMPONENTS INVOLVED IN WOT INTERACTIONS

3.3. Behaviour

3.3.1. Adding a WoT Device

We consider a simple scenario where the building owner uploads a TD via a GUI “upload thing”. We

assume that the building owner is authenticated on the platform and has a valid active session. To deploy

a WoT device into the platform, the device must be compatible with domOS (See Section 2.2.1) and a

Thing description should be provided. The thing description should contain semantic annotations from

the domOS ontology. After adding the thing description to the TDD via the editor, a compliance check

can be done to show inconsistencies with respect to the ontology, and also to notify about missing

credentials for the thing that would prevent interaction with the device. A full UI could include a GUI that

helps the user construct the TD interactively.

FIGURE 7: ADDING A NEW THING DESCRIPTION

www.domos-project.eu

Deliverable: D2.3
Version: 3.1

Due date: 28.02.2022
Submission date: 28.02.2022

Dissemination level: Public

D Functional Specification of the IoT-Ecosystem Page 27

3.3.2. Normal Scenario Where an Application Accesses (reads) a WoT Property

3.3.2.1. Open Platform

In an open platform, some conditions must be met before an application can read a WoT property. First,

the application needs to be registered on the domOS platform (ref to registering an application). Secondly,

the customer owning the device from which the application wants to read the property must have

subscribed to that application (ref to subscribing to an application). The interaction is performed in a 3

steps process, with the first two performed only when application needs to refresh its authorization token

or when it doesn’t have the Thing Description of the WoT Thing it wants to interact with. In the first case,

the application sends a request to the intermediary, which is proxying the Smart Thing. In this scenario,

the request is denied because the application needs to refresh its access key. The application then sends

a refresh access key request to the IAM which delivers a valid access key.

FIGURE 8: APPLICATION ACCESSING A WOT PROPERTY AFFORDANCE IN AN OPEN PLATFORM

www.domos-project.eu

Deliverable: D2.3
Version: 3.1

Due date: 28.02.2022
Submission date: 28.02.2022

Dissemination level: Public

D Functional Specification of the IoT-Ecosystem Page 28

Then, using the access key obtained from the IAM, the application interacts with the Thing Description

Directory to get the Thing Description of the Thing it wants to interact with. The third step is the actual

interaction with the WoT Thing. The application sends the interaction request along with its access key

and the id of the Thing to the proxied Smart Thing based on the information from the TD. Permission

check is performed by the Intermediary with the User Permission Component. If the application is allowed

to perform the interaction, the Intermediary will request the WoT Thing credentials to interact with the

real thing. Having the credentials, the intermediary forwards the interaction to the Smart System, and

when getting response from the WoT thing, forwards it to the application.

3.3.2.2. Closed Platform

For the case of a closed platform, two possible reading options: getting information from a TDD or from

a BDD. The application requests the thing description of the Thing it wants to interact with from the TDD.

With the TD, it can interact directly with the thing. The second option is to go through the BDD and get

the building description. With the BD, the application can interact directly with the thing.

a) Through TDD

b) Through BDD+TDD

FIGURE 9: APPLICATION ACCESSING A WOT PROPERTY IN A CLOSED PLATFORM

3.3.3. An Event Occurs in a WoT Device

Reading, writing, or invoking actions on a WoT device can be done by forwarding the request to the device

(assuming valid permissions). Another method of interacting with a WoT device is to passively receive

information on changes, either by subscribing to events from the device, or by observing observable

properties. In this case, the request cannot simply be forwarded. Acting as a WoT intermediate, when an

application request to subscribe to an event or property, the Platform will need to create the subscription

to the actual device and act as the intermediary. Figure 10 demonstrates an Application requesting to

listen for a particular event. The Platform checks whether it has permission to do so, starts actively

listening to events from the WoT device, and forwards all events to the Application.

www.domos-project.eu

Deliverable: D2.3
Version: 3.1

Due date: 28.02.2022
Submission date: 28.02.2022

Dissemination level: Public

D Functional Specification of the IoT-Ecosystem Page 29

FIGURE 10: APPLICATION LISTENING TO EVENTS

3.4. IoT Semantic Interoperability Using Semantic Web Technologies

Semantic web-technologies and tools can be helpful when implementing system components that

operate on semantic descriptions, such as things- and building-descriptions.

Semantic heterogeneity of an IoT ecosystem presents a major bottleneck to implement IoT applications.

Service providers and IoT developers cannot be aware of the existing available devices in the domOS IoT

ecosystem. We developed domOS Common Ontology (dCO) as a common vocabulary to achieve semantic

interoperability in smart buildings for the WoT ecosystem. The dCO is available at https://w3id.org/dco

and is the result of a collaboration between academic and industrial partners from different backgrounds.

IoT semantic interoperability allows humans and machines to have a common understanding of the

domOS ecosystem. After interviewing partners from the five demonstration sites, we have identified the

following use cases of the dCO:

• Semantic annotation of Thing Descriptions.

• Elaboration of Building Descriptions.

• Elaboration of Manifest files.

• Semantic validation of Thing Descriptions and Building Descriptions.

• Semantic search of metadata from the Semantic Knowledge Base.

• Compliance check of new IoT applications in a smart building.

https://w3id.org/dco

www.domos-project.eu

Deliverable: D2.3
Version: 3.1

Due date: 28.02.2022
Submission date: 28.02.2022

Dissemination level: Public

D Functional Specification of the IoT-Ecosystem Page 30

Service providers and IoT developers cannot be aware of the existing available devices in the domOS IoT

ecosystem. It may be useful to use a semantic search capability that enables IoT consumers to search for

the required IoT devices. For instance, a space heating service provider wants to know the list of IoT

sensors in a given room.

One of the main challenges of implementing semantic interoperability in a WoT ecosystem is to enable

IoT developers to search for IoT devices or other metadata information without having any prior

knowledge about them. To enable semantic search of IoT devices, Thing Descriptions and Building

Description are stored in a Semantic Knowledge Base. The semantic search process enables the search

for IoT devices, building descriptions based on their context such as the location, the type of the device,

the related services, and any other contextual criteria. In the Figure 11, we present the semantic search

sequence diagram. A client (here a platform software component) can send semantic queries to search

for some metadata, such as the list temperature sensors in an apartment, the thermal capacity of a

building, and the space of a building. The query access management component verifies if the client has

the right to access it’s required metadata. This can be done by filtering the queries based on the access

rights of the client. For instance, if the client is the building owner, he can access all the metadata. If the

client is a service provider, he can access only to the metadata where his application is provided.

FIGURE 11: SEMANTIC SEARCH SEQUENCE DIAGRAM

Another challenge to confront in IoT ecosystems is allowing service providers to provide application to

users based on the heterogeneous existing IoT infrastructure in smart buildings. Service providers do not

know if their applications are compliant or not with a given IoT platform. Also, households do not know

the compliant applications for their home. For instance, a space heating service provider would like to

implement his application in a smart building. He should first know if the building contains the set of IoT

devices (e.g., heater, temperature sensor) required by his service. To solve this issue, we propose an IoT

service compliance check process.

www.domos-project.eu

Deliverable: D2.3
Version: 3.1

Due date: 28.02.2022
Submission date: 28.02.2022

Dissemination level: Public

D Functional Specification of the IoT-Ecosystem Page 31

In Figure 12, we present a sequence diagram exemplifying how semantic search could help in the

compliance check process. The process begins by a client component requesting to check its compliance

for the IoT platform via the TDD/BDD APIs. The API forward the manifest file and the application id to a

SPARQL query generation component. This component generates a semantic query (SPARQL query)

based on the manifest file, the application id, and the access rights of the client. The manifest file contains

all the required IoT devices to run a given application. This manifest file is made by the service provider

of the application. The generated SPARQL query is executed in the Semantic Knowledge Base. If the

execution is successful, the API return a message to the application. This message specifies if the

application is compliant or not.

FIGURE 12: COMPLIANCE CHECK SEQUENCE DIAGRAM

www.domos-project.eu

Deliverable: D2.3
Version: 3.1

Due date: 28.02.2022
Submission date: 28.02.2022

Dissemination level: Public

D Functional Specification of the IoT-Ecosystem Page 32

4. Key Interface Specifications (Normative)

4.1.1. Swagger Key Interfaces Specifications

Swagger (SmartBear Software) is a framework for designing, building, and documenting REST-based APIs.

For the API-specification, Swagger proposes to use the OpenAPI Specification which defines a standard

(how to define parameters, responses, paths, models, etc), language-agnostic interface to RESTful APIs.

It allows a programmer to understand what the API does and how to interact with its various resources.

OpenAPI specifications are written in JSON or YAML format and can be used with the Swagger UI for

interactive documentation (See Figure 13).

One advantage of using Swagger for API specification is the various possibilities offered such as the

automatic building of highly readable and interactive API documentation, the automatic generation of

client libraries and server skeleton for the API in many languages, and finally, test generation and

automation.

The different APIs, names, and parameters are provisional and will evolve throughout the development

of the domOS platform. Inputs and outputs will be further refined and concretized as the platform API

evolves.

The API specifications are hosted at: https://herald.aau.dk/docs/

FIGURE 13: EXAMPLE SWAGGER INTERFACE

https://herald.aau.dk/docs/

www.domos-project.eu

Deliverable: D2.3
Version: 3.1

Due date: 28.02.2022
Submission date: 28.02.2022

Dissemination level: Public

D Functional Specification of the IoT-Ecosystem Page 33

4.1.2. TDD API

The API specification for the Thing Description Directory defines methods for Thing Description

management.

Methods Resource Description
GET /td Retrieve the list of Thing descriptions

• Output: List of thing descriptions registered which
the user has access (JSON-LD)

GET /td/{id} Retrieve a specific Thing description.

• Input: Identifier of the thing

• Output: thing’s thing description (JSON-LD)
POST /td/ Register a Thing description

Output Identifier of the thing and confirmation
PUT /td/{id} Updating a Thing description

• Input: Identifier of the thing.

• Output: confirmation
DELETE /td/{id} Remove a thing description.

• Input: Identifier of the thing

• Output: removal confirmation

The domOS TDD API follows the (working draft) specification (W3C (WoT Discovery), 2021). This contains

the minimum procedures that must be implemented by the domOS TDD. The specification plans

additional procedures for device management (currently unspecified), events, and semantic search using

SPARQL, XPath, and JSONPath.

Thing IDs are assigned by the TDD upon creation. Following the recommendation, it should use UUIDv4

for this (Universally Unique Identifier) (The Internet Society, 2005)

For domOS, semantic search mechanisms are provided through the Building Description Directory

component, that allows a filtered semantic description of the building model to be returned to external

applications. For domOS, the TDD (nor Building Description) should not allow full SPARQL queries to be

executed by external applications for security and privacy requirements.

4.1.3. Building Description Directory

Method Resource Description
GET /bdd/{containerId} Retrieve the (filtered) building

description,
PUT /bdd/{containerId} Update the building description

associated with the container.
POST /bdd/compliance/{containerId} Check a building description for errors,

consistency, and compliance with the
ontology.

Data that pertains to the building description, but is not part of it, goes to the corresponding components.

For example, each thing referred to in the building description needs its own thing description managed

by the TDD and credentials which are provided to the Thing Credentials & Permission component.

www.domos-project.eu

Deliverable: D2.3
Version: 3.1

Due date: 28.02.2022
Submission date: 28.02.2022

Dissemination level: Public

D Functional Specification of the IoT-Ecosystem Page 34

4.1.4. Intermediary API

The API for WoT intermediaries is defined by WoT, see (W3C (WoT Binding), 2020).

4.1.5. Authentication

Recommended for most platforms. Currently, domOS recommend OAUTH2. See OAUTH2 specifications

(OAuth Working Group).

4.2. Building Description

The initial components of the Building Description are Defined in Section 2.2.2. These components are

subject to change and the final version of the Building Description will be released in the domOS

deliverable D3.5, the final version of the domOS ontology. In the current version, the installed sensing

and actuating capabilities are captured by placing domOS things in the defined building spaces. Spaces

(specialized in rooms, floors, apartment, building) may be defined using the Building Description module

of the ontology, in particular “dco:space”, and the static properties of the space. Things devices types

are defined in the device hierarchy of the ontology (e.g. of types “dco:supply-

TemperatureSensor”, “dco:heatPumpAppliance”). The relationship between space and

device is given through the “dco:hasDevice” relation). Similar, a space (dco:space) may by

exposed of a task through the “dco:isExposedToTask” relation. dco:task represents the goal

for which a device or a set of devices are designed. For example, a heat pump and a heat pump relay are

designed for the task of space heating.

Each device has a reference (“dco:hasThingDescription”) to the actual WoT thing description

that implements the instance of the device type. This decouples the abstract, semantically well-defined,

and stable measuring and control points defined by the ontology device type from the actual devices that

supplies the data, thereby facilitating easier replacement and upgrade. The reference can be given as a

relative URI containing an id (for lookup in the TDD), or an absolute URI to the TDD or external server

where the TD is stored, or even a file (file://device.txt) on gateway hosted applications.

FIGURE 14: PRINCIPAL STRUCTURE OF THE BUILDING DESCRIPTION

www.domos-project.eu

Deliverable: D2.3
Version: 3.1

Due date: 28.02.2022
Submission date: 28.02.2022

Dissemination level: Public

D Functional Specification of the IoT-Ecosystem Page 35

In Figure 15, we present a Json-LD example of a Building Description. This building description has four

main components: a specific building metadata (line 1 to 13), building topology (line 14 to 34) indicating

the device location in each space, the building tasks (line 36 to 44), and the metadata of each device (line

46 to 74). A device can be a WoT Thing (e.g., waterTemperatureSensor01) or a device without a WoT

Thing (e.g., heatPump01). We note that the final version of the BD will be released and specified by the

final version of the domOS Common Ontology. A more detailed specification of the BD is presented at

https://www.dco.domos-project.eu/#desc.

FIGURE 15: EXAMPLE OF A BUILDING DESCRIPTION IN JSON-LD

https://www.dco.domos-project.eu/#desc

www.domos-project.eu

Deliverable: D2.3
Version: 3.1

Due date: 28.02.2022
Submission date: 28.02.2022

Dissemination level: Public

D Functional Specification of the IoT-Ecosystem Page 36

5. Conclusion and Future Work

5.1. Conclusion

This document has advanced the high-level requirements into a functional specification of the domOS

IoT eco-System. The functional specification consists of a simple 4-layered reference model for the eco-

system, a specification of required, recommended, and optional features. The main provided and

consumed interfaces (APIs) among the core components have been identified. Guidance is given for the

main components of the platform and their functional responsibilities. The dynamic interactions among

the components are illustrated through sequence diagrams that in detail exemplifies how the system is

intended to behave to solve key tasks. Finally, the details of key APIs are defined as REST APIs using the

state-of-the art tool swagger.

In conclusion, the document has presented the domOS functional specification in sufficient detail to allow

prototype implementation of the platform instances. It is also clear that this implementation work will

help identifying many of the details that would be part of a detailed and exhaustive technical specification.

5.2. Future work

Obviously, the key future work is to prototype the eco-system, a necessary step to ensure that the

specification is practically implementable, and usable for the demonstrator scenarios.

It is left for future work to define a fully self-serve platform that supports self-registration of Building

Owners, Service providers, and Applications. A further step could be to multiple platform instances and

thereby platform operators share a common registry of applications. This would ease service providers

to distribute their applications once domOS become widespread in use.

The current functionality does not specify the caching-behaviour of the intermediaries, but it is

conceivable that an intermediary caches recently read values, and stores “last-known” values of

properties. Similarly, an extension could include the digital-twin behaviour laid out in the WoT

specifications. It is also conceivable that the Building Description Directory can be served as a “Building

Thing” using WoT-technology.

The current domOS common ontology could be extended to capture dependencies and influences

between devices (more generally between the different observation and control points in the building).

The virtualization layer provided by the building model could be revised, such that it is the building

description’s responsibility to describe the possible properties that can be access in the building.

Currently, these are mainly characterized by the device types that exists in a building, and by the type of

annotation of the thing’s affordances. The main advantage is a further decoupling of the between

applications and the underlying devices, freeing applications from dealing with several different devices

and “things” specific However, such an extended virtualization layer must be carefully designed, and

semantically well-supported by the final version of domOS ontology, which will be available in Deliverable

D3.5.

www.domos-project.eu

Deliverable: D2.3
Version: 3.1

Due date: 28.02.2022
Submission date: 28.02.2022

Dissemination level: Public

D Functional Specification of the IoT-Ecosystem Page 37

6. References
CEN-CENELEC-ETSI Smart Grid Coordination Group Smart Grid Reference Architecture [Online]. - 11

2012. -

https://ec.europa.eu/energy/sites/ener/files/documents/xpert_group1_reference_architecture.pdf.

domOS D2.1 D2.1 Report on Requirement Analysis for IoT Ecosystem [Online] // https://www.domos-

project.eu/. - 11 2, 2021. - https://www.domos-project.eu/filedelivery.php?docId=20.

domOS D3.2 D3.2 domOS Common Ontology_Initial Version [Online] // https://www.domos-

project.eu/. - 11 02, 2021. - https://www.domos-project.eu/filedelivery.php?docId=17.

Le Guilly T. [et al.] Model Checking Feature Interactions [Conference] // Communications in Computer

and Information Science. - 2016. - pp. 307-325.

Le Guilly T. Model Based Analysis of Embedded Software for Smart Homes [Report]. - 2016.

OAuth Working Group OAuth Working Group Specifications [Online] // OAuth. -

https://oauth.net/specs/.

Pedersen T. Smart Home Models - Analysis, Simulation and Synthesis [Report]. - 2018.

SmartBear Software OpenAPI Specification [Online] // Swagger. - https://swagger.io/resources/open-

api/.

The Internet Society A Universally Unique IDentifier (UUID) URN Namespace [Online] // Internet

Engineering Task Force. - 2005. - https://datatracker.ietf.org/doc/html/rfc4122.

W3C (WoT Architecture 1.1) Web of Things (WoT) Architecture 1.1 [Online] // https://www.w3.org/. -

11 2020. - https://www.w3.org/TR/2020/WD-wot-architecture11-20201124/.

W3C (WoT Architecture) Web of Things (WoT) Architecture [Online] // https://www.w3.org/. - 4 2,

2020.

W3C (WoT Binding) Web of Things (WoT) Binding Templates [Online] // https://www.w3.org/. - 1 30,

2020. - https://www.w3.org/TR/wot-binding-templates/.

W3C (WoT Discovery) Web of Things (WoT) Discovery [Online] // https://www.w3.org/. - 6 2, 2021. -

https://www.w3.org/TR/wot-discovery/.

W3C (WoT Scripting API) Web of Things (WoT) Scripting API [Online] // https://www.w3.org/. - 11 24,

2020. - https://www.w3.org/TR/wot-scripting-api/.

W3C (WoT TD) Web of Things (WoT) Thing Description [Online] // https://www.w3.org/. - 4 9, 2020. -

https://www.w3.org/TR/wot-thing-description/.

Wikipedia MoSCoW method [Online] // https://en.wikipedia.org/. -

https://en.wikipedia.org/wiki/MoSCoW_method.

www.domos-project.eu

Deliverable: D2.3
Version: 3.1

Due date: 28.02.2022
Submission date: 28.02.2022

Dissemination level: Public

D Functional Specification of the IoT-Ecosystem Page 38

Appendix A: Requirements Review and Consolidation
This section reviews, consolidates, and prioritizes the high-level requirements from domOS D2.3. The

requirements are reproduced in Section “Error! Reference source not found.” where they are annotated w

ith labels to enable traceability. Table 3 explains the notation for traceability labels.

The requirements are prioritized using the MoSCoW principles (Wikipedia):

1. Must-have (Highest)

2. Should-have

3. Could-have

4. Wont-have (this time). (Lowest)

Requirement’s priority is given such that a minimum viable domOS can be achieved by implementing all

Must-Have requirements.

Tags are used to give meaning full name to requirement and also label the source (for traceability) of the

detailed technical requirement from the high-level specification in D2.1.

www.domos-project.eu

Deliverable: D2.3
Version: 3.1

Due date: 28.02.2022
Submission date: 28.02.2022

Dissemination level: Public

D Functional Specification of the IoT-Ecosystem Page 39

TABLE 3: REQUIREMENTS REVIEW

Tags Comment Responsible
Component

Priority

Multiplicity

I1

I2

I6

I7

One DOPL instance must support multiple
containers (hence multiple costumers). A container
can only be part of one DOPL instance.

One DOPL instance may serve multiple
applications. An application may use multiple DOPL
instance.

One costumer manages exactly one container. A
container belongs to exactly 1 costumer (accepted as
a design restriction in a first version: low priority)

One container registers multiple smart-systems, but a
smart system only belongs to 1 container.

DOPL Must

Multiplicity
(derived)

DOPL must keep its containers securely isolated
(multi-tenacy).

DOPL Must

WoT Standar
d

EF1-EF4

DOPL must use and adhere
to the WoT specifications.

A smart system is represented in DOPL by 1 or more
“Things” or “Intermediaries”,

A smart system presents its “Things Description” and
is registered in a “Thing directory” per container.

The registration is done by Costumer

An application is represented by 1 or more
“WoT Consumers”

DOPL Must

Smart
Systems
(Things)
Directory

ES12 ES14

DOPL hosts a WoT TD per container and properly
isolated

WoT TD (per
container)

Must

Mediator
functionality

P1, P6

DOPL forwards messages from application to correct
smart system device,

DOPL performs protocol conversion from DOPL
unified protocol to device specific protocol

The unified DOPL protocol is based on REST principles
and SSE (+server-side events, or similar mechanism).

Perform data-
conversion to/from domOS ontology and device
parameters.

WoT
Intermediaries

Must

www.domos-project.eu

Deliverable: D2.3
Version: 3.1

Due date: 28.02.2022
Submission date: 28.02.2022

Dissemination level: Public

D Functional Specification of the IoT-Ecosystem Page 40

No direct
links

P1, P5, SR4

“An application cannot access the smart system
without authentication and authorization from
DOPL.

Any communication between Application and smart
system takes place via DOPL.

However, requirement A3 states that “from business
service perspective, applications interact directly with
smart systems”. We interpret this to mean that the
intermediary should be transparent at least for the
business process, but preferably also the application
implementation.

WoT
Intermediaries

Must

Compulsory
mediator:

ES8, ES11

DOPL: any application using domOS may only use
devices registered in DOPL, and accesses these via
the DOPL Intermediary.

Problem: is it realistic that all devices are domOS?

One partner has required the possibility of having
direct access to the “thing”. DOPL should allow for
this, but the building owner should explicitly consent.
This also enables that the platform (and security
checks per device access) can be bypassed avoiding it
becoming a bottleneck in cases of intense
communication.

WoT
Intermediaries

Should

Applications

ES4

(Platform operator) registers possible
applications/services

Customer activates/de-activates applications, and
subscriptions.

WoT Consumer

Application
Manager

Should

Privacy-
rules.

P9, SP1, SP6

SP5, SP7

What is a privacy rule? Need a notation to describe
privacy rules. Need a UI for describing these, need a
mechanism registering and checking and enforcing
the rules.

Security and
Privacy
Manager

Wont

Privacy-
mechanism

P9, SP1, SP6

SP5

SP7

DOPL must enable Customers to define access rights
(e.g., RWX) for each Thing’s affordances. We remark
that this is a very low-level mechanism.

DOPL must enable customers with the ability to
configure, change (add, revoke) access rights, i.e.,
they may be subject to leasing.

DOPL must provide a comprehensible digest
about which applications have what kind of access to
what smart system attributes.

Security and
Privacy
Manager

Must

www.domos-project.eu

Deliverable: D2.3
Version: 3.1

Due date: 28.02.2022
Submission date: 28.02.2022

Dissemination level: Public

D Functional Specification of the IoT-Ecosystem Page 41

GDPR

SP2, SP4

When DOPL need to store data, it must do so in a
GDPR compliant manner.

Examples of data that the platform may need to store
are e.g., Costumer accounts (credentials, email-
address, phone numbers for notifications) access
logs, device temporary data)

A DOPL is owned by the platform operator and data is
owned by the end-user (building owner).

Remark SP2 is incomplete, and a contradiction to
SP4.

DOPL Must

Secure
connection

P7 P8 A4

Communication is encrypted, authenticated, and
authorized between

• App and DOPL,
• DOPL and smart system, and
• (APP and smart system)

Authentication
and
Authorization,
AIM, and all
external
communication
channels

Must

Smart
systems
descriptions

OS2, ES3

ES1, ES2

DOPL must have a functionality for registering
participating smart systems and
“descriptions” thereof and making ontology
annotations.

DOPL must support adding domOS ontology
annotations

Extended Wot
Things
descriptions

Must

Smart
systems
management

DOPL support for lifecycle management of smart
systems (commission, update/ maintain (e.g., battery
change)), activate/deactivate, de-commission)

Things
Manager and
UI

Could

OS1? DOPL must expose building concepts of the enclosing
container as defined in the ontology, e.g., structure
and layout of building and where which smart
systems are installed.

Building
description

Should

Smart
systems
connection

The platform must support smart systems
implemented via gateways/edge devices, cloud, and
devices that are natively “smart” enabled
(WoT Compliant devices).

Things /
Intermediate
abstractions

Could

D2

EF9

DOPL must be designed to support flexible
deployment options such that it can be deployed to
both a gateway/edge at costumer premises, outside
costumer premises, cloud, or a combination thereof
(e.g., distributed deployment where some DOPL
components are cloud hosted and some are
GW/Edge hosted?

DOPL Should

www.domos-project.eu

Deliverable: D2.3
Version: 3.1

Due date: 28.02.2022
Submission date: 28.02.2022

Dissemination level: Public

D Functional Specification of the IoT-Ecosystem Page 42

Scalable design (stateless modules etc.)

This means that DOPL architecture design should use
a loosely coupled component-based design
approach.

“One
application
to set a
control
point”. P10

ES6

To enforce this, DOPL must know what applications
want to write to what
things/things affordances/actuators.

See discussion in note 1).

Application
Manager

Note 2)

Could

“Check of
required
function”

A2 ES6

A2 states that the application is responsible for
executing a compliance check before activation.

The application should be able to
query DOPL semantically for smart
system capabilities to determine whether it can be
activated.

Application and
Building model

Could

Smart system
credentials

SR4

SR2

DOPL must provide a mechanism for storing, adding,
removing, updating smart systems credentials in
various formats as needed by the underlying smart
systems.

These credentials must only be used internally in
DOPL.

Authorization
and
Authentication

Should

Application
credentials

SR3 SR4

“Secure connection”: Two-way authorization: the
smart systems must authorize the application, and
the application must authorize the smart system (via
DOPL) (be ensured that it uses the right smart
systems only).

The platform must make it possible for Costumers
to maintain application credentials (create, change,
revoke, destroy).

Authentication may be subject to leasing to enable
revocation

A&A

Credentials
Manager

Must

Platform
security

All communication: between platform internal
components (when distributed), must be secured.

DOPL Must

EF4,
EF6 Fault-
tolerant and
safe
operation

The system must support fault tolerant
operation, i.e., the ability to continue (possibly
degraded) service in case of failure in the DOPL,
applications, or smart system. DOPL must enable
local fallback-modes, detect and report failures to the
parties that can handle them, ultimately the

Health-monitor
& notification
service

Could

www.domos-project.eu

Deliverable: D2.3
Version: 3.1

Due date: 28.02.2022
Submission date: 28.02.2022

Dissemination level: Public

D Functional Specification of the IoT-Ecosystem Page 43

costumer. Hence, monitoring application and smart-
system, and platform health is desired.

(Safety means that no harm or injury happens to the
costumers, inhabitants, etc.).

Costumer
user
interfaces

EF7 EF8

Management UIs must exist for administrating
(adding, removing, changing) costumers, smart
systems registration plus ontology annotations,
application subscriptions, and credentials,
permissions.

All end-user facing administration interfaces must be
understandable and usable by ordinary persons. This
implies a professional UX design and usability
evaluation as part of the development.

User Mgt UI

SS Mgr UI

Subscription
Mgt UI

Credential Mgt
UI

Privacy Mgt UI

Should

EF9 Single point of failure

Feature
interaction

EF6? P10

Undesired feature interaction is not to be handled by
DOPL

 Wont

Note 1)

Essentially this means that the platform must be able to grant an application exclusive access to a control
point. The platform must track which control points are allocated to what services. If an application can
allocate control-points dynamically, the system has potentials for deadlocks. Solutions may be to require
applications to allocate all control-points in advance, allocate control-points in a globally order decided
by platform, or the platform should detect and recover from deadlocks (typically by forcefully terminating
applications). In general, exclusive access to control-points is an insufficient condition to avoid undesired
feature interaction among applications.

Business services / applications provide a manifest of needed properties that the platform can check?

Furthermore, tracking the state of locks is inherently stateful, requiring special recovery mechanisms
from failures. Hence, a static map from applications to needed control-points is easier to handle (but less
flexible). When applications are long running implementing continuous services, this may less of a
problem, whereas if applications are one-shot executions, it may be too inflexible.

A WoT Thing provides 4 kinds of “affordances”: Properties, Actions, Events, and Navigation Links. A
property can be read/written, and an action may change or only read. Hence, a thing may have multiple
write-entries to the same underlying physical control “relay(s)” (e.g., property ON/OFF, and action
“turnON”). How should a “control-point” map to the underlying mechanism that can only be controlled
via one application: 1) entire “thing” is allocated to each application, or 2) individual affordances.

-> add annotations?

www.domos-project.eu

Deliverable: D2.3
Version: 3.1

Due date: 28.02.2022
Submission date: 28.02.2022

Dissemination level: Public

D Functional Specification of the IoT-Ecosystem Page 44

P11: “Interferences must be handled at service level”: Unclear requirement: Does it mean that a service
should know which services it is compatible with, and not be installable if such a service is already
running? A given service may not now in advance what other services may be running. That means that
the platform may reveal what other services are running?

• Not trivial, needs lot of knowledge of what the service wants to do and the general profession
rules

• Possibility: lock/unlock, but risk of deadlocks and does not solve cross-system problems

Note 2)

“Service orchestration supports the integration of multiple services to perform a user task or data
synchronization in real time [57]. In the IoT context, orchestration is concerned with the identification of
which components or smart devices are needed to form the requested service [11]. An orchestrator can
be any IoT device that is used to control the execution transparently to the user. The orchestrator sends a
triggering event that checks the condition for carrying out an action using actuators [58]. The
development of a service orchestrator requires a deep understanding of service semantics and
decomposition of the service request [59]. “

www.domos-project.eu

Deliverable: D2.3
Version: 3.1

Due date: 28.02.2022
Submission date: 28.02.2022

Dissemination level: Public

D Functional Specification of the IoT-Ecosystem Page 45

Appendix B: Requirements Links and Traceability
The following section adds requirement labels for the requirements for the domOS eco-system listed in

D2.1 (domOS D2.1, 2021). The section repeats the requirements and adds labels to the individual

requirements and thereby enabling traceability between design decisions and the original high-level

requirements.

The labelling used are as follows:

TABLE 4: REQUIREMENTS TRACEABILITY LABELS

Label number Requirement Category

On Objectives and Success Criteria

In IoT Eco-system

Pn Platform requirements

An Application requirements

Sn Smart Systems requirements

SRn Security requirement

OSn Ontology and Semantics requirement

SPn Support for Privacy

Dn Deployment requirement

ESn Smart systems description

EFn Extra-functional requirements

D Functional Specification of the IoT-Ecosystem Page 46

7. Objectives and Success Criteria
The WP2 objectives and their corresponding success criteria are presented in Table 5.

TABLE 5: SUCCESS CRITERIA

Objective Success criteria

To elaborate and prototype a
standard-based architecture
named “IoT ecosystem”,
allowing:

• a decoupling between
smart systems and
applications,

1. An application can interact with any container, providing smart
systems make the appropriate monitoring and control
parameters available. O1

2. Smart systems provide a description of:
o their monitoring and control parameters using the

domOS core ontology, O2
o the access protocol(s) along with the security

credentials, and of O3
o the syntax of exchanged messages. O4

3. An application can verify whether the container is equipped with
the required monitoring and control parameters before
deployment. O5

4. The IoT ecosystem is based on open standards promoted by
recognised standardisation bodies. O6

• owners to manage their
privacy, and

1. Owners explicitly allow an application to operate with their
smart systems. O7

2. Owners explicitly allow applications to monitor/ control
individual parameters. O8

3. Platforms provide owners with an interface where they can
centrally manage their privacy. O9

• secure operation of
buildings.

1. Applications dispose of their own security credentials to access
the platform. O10

2. The platform disposes of the security credentials to access smart
systems. O11

To upgrade the three
participating IoT platforms (S-
IOT, cloud.iO, ArrowHead)
according to the defined IoT
ecosystem.

1. Each participating platform provides an implementation of the
IoT ecosystem. O12

To prototype a smart
application capable of running
over the three enhanced IoT
platforms.

1. A Proof of Concept (PoC) illustrates that a single prototype
application is capable to operate over each platform. Each
platform connects smart systems providing the same monitoring
and control functions (e.g., electrical power monitoring and
power supply control). O13

To define a sound concept for
retrofitting existing buildings
with monitoring and control
infrastructure for energy
appliances.

1. The concept allows to retrofit all generations of buildings
throughout Europe. O14

2. Monitored and controlled parameters enable smart services for
energy efficiency and energy flexibility. O15

3. The overall cost (hardware, manpower) for installation is in-line
with the expected benefits. Target values: 100 € for a
communication gateway, 1 hour work time onsite and 100 €
hardware cost per connected appliance. O16

D Functional Specification of the IoT-Ecosystem Page 47

7.1. Overview

7.1.1. Overview of the IoT Ecosystem

For simplicity, a customer is assumed to manage exactly one container. I1

The central element of a domOS ecosystem is the platform. Once they have committed to a platform,

customers can register one or more smart systems on it. I2

Customers can subscribe to applications. I3 Applications can only be activated if the smart systems in the

corresponding containers provide appropriate monitoring and control parameters, I4and if it is compliant

with privacy rules defined by customers. I5

An overview of the IoT ecosystem is provided on Figure 16.

FIGURE 16: ELEMENTS IN THE IOT ECOSYSTEM

Compliant platforms implementing the IoT ecosystem can be many, possibly based on different

implementations. I6 A container is hooked to only one platform. On the contrary, applications can access

multiple platforms. I7

D Functional Specification of the IoT-Ecosystem Page 48

7.2. Functional Requirements

7.2.1. Requirements for Platforms

A platform is a compulsory mediation point between applications and smart systems, i.e., there are no

direct links between applications and smart systems. P1

A platform is a pure ICT player. As such, it does not care about the business aspects of smart services. P2

A platform shall:

• have access to a description of the smart systems hosted by participating containers, P3

• allow a registered application to verify whether a container disposes of the appropriate

infrastructure for the service, P4

• act as an intermediary between applications and smart systems. P5

In its intermediary function, the platform shall:

1. handover messages from applications to smart systems, and from smart systems to applications,

P6

2. accept secured connection from registered applications, P7

3. implement secure connections to registered smart systems, and P8

4. implements privacy rules defined by the customers. P9

At most one application shall control a set point in a smart system. This rule shall be enforced by a

platform on a “first come – first serve” basis. P10 Interferences between multiple services accessing

multiple actuators (e.g., one Service turns on the heater and one other Service opens a window) shall be

managed at the Service level. P11

7.2.2. Requirement for Applications

An application is a software component that provides a service through interaction with smart systems.

A1

Before activation, an application shall verify that smart systems inside a container offer the required

functions. A2

From a service perspective, applications interact directly with smart systems. A3

From a technical perspective, applications connect to a platform. An application shall use a unique set of

security credentials defined by the platform, i.e., it does not share any security credentials with smart

systems. A4

7.2.3. Requirement for Smart Systems

Containers host one or more connected system(s) featuring internet connectivity. S1

Smart systems are connected systems made compliant with the domOS ecosystem. S2 Turning a

connected system into a smart system should only require the provision of a description of the connected

D Functional Specification of the IoT-Ecosystem Page 49

system (i.e., no protocol adaptation, no message translation, no modified security scheme or security

credentials). S3

Considering that a platform is the peer communication entity of a smart system, and that platforms can

support a limited set of protocols, the integration of systems only through description is only possible if

the connected systems implement protocols, message formats and access control schemes supported by

platforms. S4 The legacy technologies supported by platforms shall be defined. S5In this document, only

systems whose communication is supported by platforms are considered. Other systems require an

application-level gateway. S6

A smart system shall register on a platform. As part of the registration process, it makes its description

available to the platform. S7

The component turning a connected system into a smart system can be implemented either on a local

gateway in the container premises, as a cloud service, or natively in the connected system. S8

A smart system description can be either static (i.e., typically provided in a text file), if the smart system

configuration remains stable over time, or dynamic (i.e., generated from a smart system internal

directory). S9

7.2.4. Security Requirements

Smart systems are assumed to feature a secure (i.e., authenticated and encrypted) data interface. SR1

Security credentials for smart systems shall be uploaded in the platform, e.g., as part of their description.

SR2

Applications establish a secure connection to platforms, using a (state-of-the-art) security scheme and a

security credential provided by platforms. SR3

Applications shall in no circumstances know smart systems security credentials. SR4

7.2.5. Requirements on Semantics

WP3 “Common Ontology and Semantics” develops the domOS core ontology, which will define naming

conventions for relevant concepts in buildings. OS1

Smart systems descriptions should associate domOS core ontology elements with information enabling

the concrete remote (read and/or write) access to current element values in the smart system. OS2

7.2.6. Requirements on Privacy

A platform shall be able to grant or deny applications the right to access single monitoring or control

points2. SP1

Ensuring a legitimate use of the collected data (e.g., purpose limitation and data minimization according

to GDPR) is the sole responsibility of the application. SP2

2 In the domOS vision, the access rights for applications should be managed by customers. The implementation
of such a privacy management system is not included in the requirements.

D Functional Specification of the IoT-Ecosystem Page 50

7.2.7. Requirements on Deployment Topology

Connected systems are physical devices / appliances installed in the customer premises. D1

A platform and an application are components that can be deployed using different topologies: D2

It should be possible to use edge and cloud hosting at all levels. Two possible topologies are presented

on Figure 17.

(a)

(b)

FIGURE 17: TWO POSSIBLE TOPOLOGIES: (A) DISTRIBUTED CLOUD SOLUTION (B) EDGE SOLUTION

D Functional Specification of the IoT-Ecosystem Page 51

The choice of a topology appropriate for a given context is outside the scope of the WP2. D3

The IoT ecosystem should put as few constraints as possible on underlying topologies. D4

IoT platforms may not support all possible topologies. D5

7.2.8. Support of Privacy

Compliance with data protection regulations must be insured by applications. SP3

Platforms play a technical mediation role and do not store any personal data. Hence, they are not

subjected to data protection regulations SP4. However, they support customers for privacy management

SP5. As part of the subscription process to an application, a platform should give access to monitoring or

control parameters only after a formal approval by the customer SP6.

Platforms are also able to present to customers a report on implemented access rights (which application

may access which monitoring / control parameters). SP7

7.3. Non-Functional Requirements

7.3.1. Compliance with Recognized IoT / Web Standards

“The Internet of Things (IoT) is widely recognised to have lots of potential, but its commercial potential is

being held back by fragmentation. A sensor on its own has limited value, but there are huge opportunities

for open markets of services that combine sensors, actuators and multiple sources of information. The

Web of Things seeks to counter the fragmentation of the IoT, making it much easier to create applications

without the need to master the disparate variety of IoT technologies and standards. Digital twins for

sensors, actuators and information services are exposed to consuming applications as local software

objects with properties, actions and events, independently of the physical location of devices or the

protocols used to access them.” 3

The Web of Things Interest Group at W3C leads standardization for the so-called Web of Things (WoT).

W3C WoT standards have been identified as the most relevant standard series for the smart buildings

use cases (see extract from the WoT architecture presented above).

Relevant WoT standards with their current status are reported on Table 6:

TABLE 6: STATUS OF W3C WOT STANDARDS

Title Date for
current
version

URL for the latest
published version

Content description Status

Web of Things
(WoT): Use
Cases and
Requirements

27 January
2021

https://w3c.github.io
/wot-usecases/

Collection of new IoT use cases
from various domains

Draft

3 From “Web of Things (WoT) Architecture - W3C Recommendation 9 April 2020” available at
https://www.w3.org/WoT/

https://w3c.github.io/wot-usecases/
https://w3c.github.io/wot-usecases/
https://www.w3.org/WoT/

D Functional Specification of the IoT-Ecosystem Page 52

Title Date for
current
version

URL for the latest
published version

Content description Status

Web of Things
(WoT)
Architecture

9 April 2020 https://www.w3.org/
TR/wot-architecture/

Description of the abstract
architecture for the W3C Web
of Thing

Recommen-
dation

Web of Things
(WoT) Thing
Description

9 April 2020
(corrected
23 June
2020)

https://www.w3.org/
TR/wot-thing-
description/

Formal model and a common
representation for a Web of
Things (WoT) Thing Description

Recommen-
dation

Web of Things
(WoT) Binding
Templates

30 January
2020

https://www.w3.org/
TR/wot-binding-
templates/

Binding Templates enable a
Thing Description to be adapted
to the specific protocol or data
payload usage across the
different standards.

Working
Group Note
(draft)

Web of Things
(WoT) Scripting
API

24
November
2020

https://www.w3.org/
TR/wot-scripting-api/

Application programming
interface (API) representing the
WoT Interface that allows
scripts to discover, operate
Things and to expose locally
defined Things.

Working
Group Note
(draft)

Web of Things
(WoT) Security
and Privacy
Guidelines

6 November
2019

https://www.w3.org/
TR/wot-security/

Guidance on Web of Things
(WoT) security and privacy.

Working
Group Note
(draft)

The IoT ecosystem for buildings shall specialize the WoT Architecture for the specific context of smart

buildings. EF1

Smart system description shall be compliant with the WoT Thing Description (TD). Links to smart systems

on the field should follow the WoT Binding Templates guidelines. EF2

The WoT Scripting API is described in a working document and features a reference implementation4. It

could be a valuable tool to upgrade the platforms but is not a compulsory element of the IoT ecosystem

for buildings. EF3

The WoT Security and Privacy Guidelines describes threats scenarios and proposes recommendations

based on the best available practices in the industry. As it contains informative statements only, it is not

part of the IoT ecosystem. EF4

7.3.2. Safety

Smart systems shall work safely even if the connection to the platform or to an application is lost. If a

smart system does not meet this requirement, it should not be part of the ecosystem. Hence, network or

platform failures may decrease the performance of the subscribed smart systems but shall not jeopardize

their safety. EF4

4 http://www.thingweb.io/

https://www.w3.org/TR/wot-architecture/
https://www.w3.org/TR/wot-architecture/
https://www.w3.org/TR/wot-thing-description/
https://www.w3.org/TR/wot-thing-description/
https://www.w3.org/TR/wot-thing-description/
https://www.w3.org/TR/wot-binding-templates/
https://www.w3.org/TR/wot-binding-templates/
https://www.w3.org/TR/wot-binding-templates/
https://www.w3.org/TR/wot-scripting-api/
https://www.w3.org/TR/wot-scripting-api/
https://www.w3.org/TR/wot-security/
https://www.w3.org/TR/wot-security/
http://www.thingweb.io/

D Functional Specification of the IoT-Ecosystem Page 53

The platform operators decline any liability regarding the safety of connected smart systems. EF5

Application could cause safety problems by providing erroneous set points (e.g., frequent switch on /

switch off commands on a heat pump). The liability for such safety issues shall be handled directly by

customers and application operators. EF6

7.3.3. Usability

Management procedures for registering customers, adding / removing smart systems, and subscribing /

unsubscribing to applications shall be simple enough to be executed by ordinary persons. EF7

The usability of management procedures depends on the concrete implementation of a platform but also

on features of the IoT ecosystem. The IoT ecosystem should enable the development of compliant

platforms featuring a high degree of usability. EF8

7.3.4. Performance

The IoT ecosystem should allow scalable implementations. EF9 This means, but is not limited to:

• using lightweight protocols,

• enabling implementation in independent stateless modules,

• minimizing the volume of stored data,

• allowing parallel implementation in clusters.

7.4. Smart System Description

The IoT ecosystem shall provide guidelines on the schema of the smart system description. These

guidelines shall be based on the Things Description specification defined by the WoT architecture. ES1

The smart system description shall use of the domOS core ontology, to name monitoring and control

parameters in participating smart systems. ES2

Platforms should have access to the description of registered smart systems. ES3

7.5. Subscription to an Application

The following preconditions are assumed to be fulfilled: Customer C is registered on the platform P,

application A are registered on the platform P, smart systems SS1 and SS2 have registered their

description on platform. ES4

In this context:

• Customer C initiates a subscription process to Application A. ES5

• Platform P verifies that the smart systems SS1 and SS2 comply with A’s requirements. If not, the

subscription process is aborted. The verification process makes use of the Directory scenario

presented in Section 2.2.7. ES6

• Platform P enables A to access the required parameters after approval of the customer C. The

application A is from now on active. ES7

D Functional Specification of the IoT-Ecosystem Page 54

7.6. Intermediary Function

The intermediary function as introduced in Section Requirements for Platforms7.2.1 should be based on

the Intermediary concept defined in the WoT architecture5. ES8 This concept is illustrated in Figure 18.

FIGURE 18: ILLUSTRATION OF THE INTERMEDIARY CONCEPT IN THE WOT ARCHITECTURE (W3C (WOT ARCHITECTURE),
2020)

The intermediary acts as a proxy between Applications and Things. ES9

The implementation of the intermediary should be based on the servient concept defined in [WoT]. ES10

As illustrated on Figure 19, Smart Systems “expose” their descriptions (“Thing Description”) to the

servient that “consume” them. The servient merges the descriptions into a new description, “exposed”

to Applications.

FIGURE 19: IMPLEMENTATION OF THE INTERMEDIARY BASED ON THE SERVIENT CONCEPT (W3C (WOT ARCHITECTURE),
2020)

The servient implementation should make use of the WoT Scripting API (W3C (WoT Scripting API), 2020),

which allows an abstract6 and semantic access to Smart Systems (Things). Hence, the communication

5 “An entity between Consumers (Applications in the present document) and Things (Smart systems) that can
proxy, augment, or compose Things and republish a WoT Thing Description that points to the WoT Interface
on the Intermediary instead of the original Thing. For Consumers, an Intermediary may be indistinguishable
from a Thing, following the Layered System constraint of REST.” Web of Things (WoT) Architecture. W3C
Recommendation 9 April 2020
6 In this context, “abstract” means “independent of communication protocols and message formats”.

D Functional Specification of the IoT-Ecosystem Page 55

(protocols and message formats) between an Application and the Platform could differ from the

communication between the Platform and a Thing.

The intermediary should implement the access right mechanism defined in 7.2.4. ES11

7.7. Smart Systems Directory

The scenario “Subscription to an Application” presented in Section 7.5 requires that the Platform

manages a Smart System directory. ES12

The description of smart systems should be uploaded in the directory. During the subscription process,

applications should express their requirements in such a way that the Platform can check whether the

requirements are fulfilled by asking the directory. ES13

The WoT Architecture defines a “Thing Directory” role and refers to the IETF draft standard (CoRE

Resource Directory, https://tools.ietf.org/html/draft-ietf-core-resource-directory-21) ES14

https://tools.ietf.org/html/draft-ietf-core-resource-directory-21

